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INTRODUCTION 

In the recent development of the chemistry of organo-

silicon reactive intermediates, silacyclobutanes have 

played a key role in the development of the chemistry of 

silenes (silicon-carbon double bonded intermediates). Most 

silacyclobutanes cleanly afford silenes and ethene as 

nearly exclusive products upon thermolysis. 1-Hydrido-l-

silacyclobutanes are unique in that propene is formed as a 

significant product upon thermal decomposition. This 

dissertation will present the results of an investigation 

into the mechanism of this reaction, employing labelled 1-

deuteriosilacyclobutanes, and of a related study of alkyl-

silylenes suggested by work with silacyclobutanes. 

A comprehensive Historical section is first presented, 

summarizing key points of the current knowledge of sila­

cyclobutanes, silylenes, and silacyclopropanes which are 

pertinent to the results of this research. Further 

information and references may be found in the relevent 

reviews cited in the text. 
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HISTORICAL 

Thermal Decomposition of Silacyclobutanes 

Silacyclobutanes have been known since 1954 when 

Sommer and Baum reported the first confirmable preparation 

of 1,1-dimethylsilacyclobutane 1 (1). Thermal gas phase 

decompositions of silacyclobutanes have only been 

investigated since the middle 1960s when it was first 

reported that 1 affords ethene and 1,1,3,3-tetramethyl-l,3-

disilacyclobutane 2 as exclusive products upon gas phase 

pyrolysis (2, 3, 4a). 

Me 
I 

Me—Si — 

Me^Si *^2^4 

The elucidation of the mechanism of this decomposition 

has played a pivotal role in recent organosilicon chem­

istry, since it was through pyrolysis of 1 that proof of 

the existence of silene 3 as a discrete reactive inter­

mediate was established (4). Vacuum pyrolysis of 1 cleanly 

afforded 1,1,3,3-tetramethyl-l,2-disilacyclobutane 2 

(silene 3 dimer) and ethene in a first order process with 
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very similar Arrhenius parameters (k = 10^^'^ exp[-62300 

kcal/RT]) as those known for the cyclobutane thermolysis (k 

_ ]_o exp[-61000/RT] ) (5). The rate of decomposition 

observed was inhibited by the addition of excess ethene or 

propene (with formation in the latter case of 1,1,3-tri-

methylsilacyclobutane 4). Trapping experiments were con­

sistent with the formation of silene 3, including co-

pyrolysis of 1 with 1,3-butadiene, which afforded 1,1-

dimethyl-l-silacyclohex-3-ene 5, the 4+2 adduct of silene 3 

and butadiene. 

MegSi 

u 
1 

MegSi—; 
MegSrzzCHg 

Me 2 Si-

LA 
Me SiMe, 

These results, although virtually demanding of silene 

intermediacy, do not establish the site of initial bond 

rupture or indicate whether a diradical (e.g., 6) is 

involved. The first clue indicating that 6 was the init-
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ially formed intermediate, and that silacyclobutanes decom­

pose via initial g-C-C bond scission, and hot initial a-Si-

C bond breakage, was provided by the pyrolysis of 1,1,3-

trimethylsilacyclobutane 4 (6). The product, 1-allyl-

1,1,1-trimethylsilane 7, is easily rationalized as the 

product of intramolecular disproportionation of diradical 

8 .  

MegSi" MegSi-

Several groups studying the pyrolysis of unsymmetrical 

1,1,2-trisubstituted-l-silacyclobutanes independently pro­

vided conclusive evidence that the B-C-C bond is the site 

of intial bond breakage. Golino et al. studied the gas 

phase pyrolysis of l,l-dimethyl-2-phenyl-l-silacyclobutane 

9 between 530-500°C (7). The ratio of 1,l-dimethyl-2-

phenylsilene 10 dimers or trapping products (various 

trapping agents were used, including benzophenone, illus­

trated below in Scheme 1) to products derived from 1,1-

dimethylsilene 3 was interpreted as a measure of the rela-
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tive extent of C-C bond scission (path a) vs. Si-C bond 

scission (path b), and found to vary from > 30/1 at 530°C to 

> 6/1 at 611°C. The pyrolysis of 9 was also studied by 

Valkovitch et al. (8). At 500°C (nitrogen flow pyrolysis) 

a 69% yield of 1,1,3,3-tetramethyl-2,4-diphenyl-l,3-disila-

cyclobutane 11 was obtained (based on recovered 9), along 

with ethene. Styrene (< 5% yield) was noted as a product in 

one run. 

Scheme 1 

Me^S; ^Ph 

path a 

"X^path b 

Ph 

Ph 

Ph 

10 

Ph, 

PhgCzzCHPh 

(530°C, 35% 

611°C, 35%) 

MegSi H, PhgC H, 

Ph^C zzro (530 C, ̂  

611°C, 6%) 
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Scheme 1 (continued) 

Ph 
\=.CE^ <5% 

Ph 
MegSi / ^ 

9 
SiMeg 69% (50/40 cis/trans) 

Ph 

11 

A similar picture emerged in the work of Barton et 

al., who analyzed the products from the nitrogen flow pyro-

lysis of 1,1,2-trimethyl-l-silacyclobutane, concluding that 

intial C-C bond hemolysis (9). The relative yield of 

disilane products resulting from Si-C bond hemolysis rose 

from 24.8% at 520°C to 44.9% at 680°C. 

Despite this consistent and straightforward picture 

which emerged from these studies of silacyclobutanes, 1-

hydridosilacyclobutanes, in particular the parent system, 

silacyclobutane 12 itself, have proved more problematic. 

Although matrix isolation of 1,1-dimethylsilene 3 from 1,1-

dimethylsilacyclobutane 1 has been accomplished on numerous 

occasions, efforts to isolate the corresponding unsubsti-

tuted silene 13 from 12 have consistently failed (4b, 10). 

Although Sommer reported the chemical trapping of 13 with 

at 520°C 75.2% of the disilanyl products resulted from 



www.manaraa.com

7 

some traps (benzophenone and hexamethylcyclotrisiloxane), 

other traps failed, and in the absence of trapping agent no 

dimers of 13 could be found; only an intractable silicon 

containing polymer was formed (11). 

Renewed interest in the pyrolysis of 12 was triggered 

by a report of Conlin and Gill, who in 1983 published 

results for the low pressure copyrolysis of 12 and 1,3-

butadiene (12). The major process of decomposition was the 

expected one of C-C bond hemolysis and formation of 

silene 13 via diradical 19a, but in addition to 1-sila-

cyclohex-3-ene 14 (the 4+2 cycloadition product of 

butadiene and silene 13), l-methyl-l-silacyclopent-3-ene 15 

and l-silacyclopent-3-ene 16 were obtained (Scheme 2). 

Since silacyclopentenes are formed as adducts of silylenes 

and butadiene, 15 was taken as evidence for the inter-

mediacy of methylsilylene 17 which was postulated to be 

formed via a 1,2-hydrogen shift in silene 13. Conlin also 

reported the formation of cyclopropane (or propene resul­

ting from its isomerization at higher temperatures); its 

presence along with 16 constituted evidence for a com­

petitive decomposition of 12 to silylene 18. Based upon 

thermodynamic considerations a stepwise process of initial 

Si-C bond hemolysis and subsequent elimination of silylene 

18 from diradical 19b was favored over a direct chelotropic 
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extrusion of 18. 

Conlin's principle interest in studying the pyrolysis 

of 12 was to demonstrate the conversion of 13 to 17 via a 

1,2-hydrogen shift (a topic which has sparked a good deal 

of controversy and served as a remarkably interesting test 

of both experimental capabilities and the accuracy of 

current calculational methods in organosilicon chemistry 

[13]). Of more interest to this investigation, however, is 

the origin of silylene 18 from silacyclobutane 12. Neither 

a concerted elimination of 18 (path a. Scheme 2) nor the 

diradical mechanism favored by Conlin and Gill (path b) 

seemed adequate in the light of several relevent consider­

ations; (a) Davidson et al. found that no cyclopropane was 

actually formed, only propene, even under conditions where 

cyclopropane is stable; (b) the decomposition of 1,1-

dimethylsilacyclobutane 1 is a very clean reaction affor­

ding only ethene and silene, and no propene is formed 

whatsoever; (c) silicon-carbon bond energies are little 

affected by substituents on silicon (D of HgSi-CH^ = 88.3 

kcal/mol, and D of Me^Si-CH^ = 89.4 kcal/mol) (4a, 14, 15). 

Thus there appeared to be no reason, considering these 

factors, that silacyclobutane 12 should afford propene, 

when 1,1-dimethylsilacyclobutane 1 does not. A mechanism 

which explains the unique involvement of hydrogen on 
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Scheme 2 

HgSi — HgSl 

u U - ^  

12 \ 19a 
\. path a 

ath 

40 

HgSi* n 
19b 

SSiHr 

18' 

+ 

A 

13 1,2-H Me H 

0„, C"-

14 (7.6%) 15 (14.IS) 

/r\ 

16 

silicon was sought. It was hypothesized that 12 decomposed 

to silylene 18 and propene via initial a-elimination of a 

methyl group to form propylsilylene 20 which then undergoes 

further decomposition to propene and silylene 18. As will 

be discussed in the next section of this Historical, this 

hypothesis had precedent in the known decomposition of 
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alkylsilylenes to olefins, and it had been observed that 

alkyl elimination in silanes could occur, yielding 

silylenes. It was to test this proposition that this 

dissertation research was originally undertaken. 

HgSi 

12 

=S^ + : SiHg 

\ 
18 

/ 

Me 

C-H Insertion and Elimination Reactions Involving Silylenes 

Since the discovery by Friedel and Ladenburg in 188 0 

that the thermal decomposition of hexaiododisilane 21 

afforded a polymer of diiodosilylene, ̂ -elimination has 

become by far the most important thermal method for the 

generation of silylenes (divalent silicon analogues of car-

benes) (16-22). Typical precursors employed include both 

disilanes (as in the experiment of Ladenburg) and mono-

silanes. 
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21 A 

In the case of monosilanes, silylenes were first con­

firmed as intermediates in the thermal decomposition of 

tetrahalosilanes, and since the 1930s numerous thermal 

reactions at high temperature of tetrahalosilanes which 

probably involve dihalosilylenes have been discovered (19-

21). These include the formation of dichlorosilylene 24 in 

the pyrolysis of silicon tetrachloride 22 in a nitrogen or 

hydrogen atmosphere or in a hydrogen atmosphere over a 

silicon surface (19). Silane 23 itself has similarly 

been determined, despite a great deal of initial contro­

versy, to thermally decompose via an initial unimolecular 

elimination of dihydrogen with formation of silylene 18 

(log A = 13.3, = 53 kcal/mol) (16-19, 23, 24). Although 

the reverse reaction, silylene insertion into the dihydro­

gen bond, has not been experimentally confirmed, it has 

b e e n  c a l c u l a t e d  t o  h a v e  a n  a c t i v a t i o n  e n e r g y  o f  6 . 3 + 1  

kcal/mol and experimentally estimated to be 5.5 + 1 

kcal/mol (25, 25). 
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1000-1500°C 

SiCl. • :SiCl2 
or H_ atm 

00 24 
or ̂ 2 atm/Si(s) 

SiH^ ^ :SiIÏ2 + 

23 ? 18 

Much lower temperatures may be achieved in the pyroly­

sis of suitable disilanes, the decomposition of which has 

become the method of choice for the thermal generation of 

silylenes. For example, Atwell and Weyenberg found that 

the pyrolysis of methoxydisilanes cleanly affords silylenes 

at very convenient temperatures (> 200°C in sealed tubes). 

The thermolysis of 1,2-dimethoxytetramethyldisilane 25 

proceeded at 225°C in a sealed tube, affording dimethyl-

silylene 26 and dimethyldimethoxyoxysilane 27 in a reaction 

which was determined to be unimolecular and reversible 

(19, 27, 28). Insertion of 26 into Si-0 bonds resulted in 

the formation of a,w-dimethoxypolysilanes 28 and 29. 

Hydridodisilanes behave similarly, and it is well 

established for example that disilane 30 decomposes ther­

mally to silylene 18 and silane 23 in a reversible reac­

tion, with silylene insertion into the Si-H bonds forming 
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trisilane and higher molecular weight polysilanes 31 (24, 

26, 29-32). Insertion into Si-H bonds is a general 

reaction of silylenes, widely employed as a characteristic 

trap (16, 19, 32). More recent work has indicated that in 

the disilane pyrolysis, elimination of molecular hydrogen 

is competitive with silane elimination (k^/k^ « 3.0/1.0, 

Scheme 3), although still a minor process (33). 

Scheme 2 

MeOSiMegSiMegOMe ^ MegSiZ + (MeO)gSiMSg 

25 26 27 

MeOISiMejj^OMs + Me^Si; MeO(SiMs,) ,,OMe 
'2'n+l 

28 26 29 

SsSiSiH, k 

_ HSiSiH- + H-

30 
1 

H_Si: + SiH, 
z *± 

18 23 

H^si: + H(SiH,)_H H(SiH^)^.,H 
z z 11 a" z n-rx 
18 

Despite the wide variety of silylene-forming reactions 

by alpha-elimination processes known, silylene formation 

via elimination of the elements of carbon and hydrogen 

(alkyl elimination) has remained a rare process, first 



www.manaraa.com

14 

noted by Davidson and Ring in the low pressure pyrolysis (< 

10"^ torr, 930-1000 K) of methylsilane 32. The major 

primary reaction was found to be unimolecular dihydrogen 

elimination (also found by Neudorfl and Strausz) which 

produces methylsilylene 17, however also detected was a 

small amount of methane (< 5%), attributed to a unimolecular 

process of alkyl elimination which yields methane and 

silylene 18 (34, 35). 

Whereas methane formation accounts for less than 1/20 

of the methylsilane 32 decomposition, methane elimination 

becomes more significant in the pyrolysis of dimethylsilane 

34. Rickborn et al. found that under stirred-flow pyro­

lysis conditions (843-992 K) methane was detected in the 

reaction products (36). Its unimolecular formation was 

calculated to consitute ca. 30% of the primary process 

dimethylsilane decomposition at 1200 K. 

20 

MeSiH + 

MeSiH, - " 

32 ' 

HgSi# + CH^ 

18 
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MegSi: + 

26 
MSgSiHg 

MeSiH + CH 
4 

17 

Arrhenius parameters for dihydrogen and methane elimin­

ation from silane 23, methylsilane 32, and dimethyls!lane 34 

have been collected for comparison and are presented in 

Table 1. 

In what may be an apparent example of an "intramolecu­

lar" C-H elimination Barton, Burns, and Burns found that 

copyrolysis of methylsilylene 17 generator 1,1,1,2-tetra-

methyldisilane 35 with acetylenes afforded products 

indicative of vinylsilylene formation, presumably arising 

via intermediate silacyclopropenes (Scheme 4) (39). 

Copyrolysis of 35 with acetylene afforded 1-ethynyl-l-

methyl-l-vinylsilane 36. This was rationalized as the 

result of addition of 17 to acetylene (an excellent 

silylene trap), yielding silacyclopropene 37, which 

rearranges to vinylmethylsilylene 38. Reaction of 38 with 

another molecule of acetylene produces silacyclopropene 39 
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Table 1. Monosilane pyrolysis Arrhenius parameters 

Reaction Log A (kcal/mol) Réf. 

SiH^—». Si : + 

MeSiHg •MeHSi: + 

MeSiH, -• H^Si: + CH^ 
2 4 

Me^SiH ̂ Me^Si: + H 
2 2 2 2 

Me^SiH, MeHSi: + CH. 

13.2 53.6 25,38 
13.8 55.1 38 
13.3 52.7 37 

14.1 64.8 34 
14.9 63.2 35 
15.2 64.8 37 

13.6 69.3 34 
14.7 66.7 37 

14.3 68.0 35 

14.8 73.0 36 
15.0 72.0 37 

Data are from réf. 25 as recalculated in réf. 38. 

which rearranges to the observed product 36. 

That the reaction of 37 to 38 may be reversible was 

suggested by earlier results of Barton and coworkers, who 

found that 38 rearranged to 1-methylethynylsilane 40 in the 

absence of acetylene (Scheme 4) (40). This could occur 

through direct C-H insertion to form silacycloprop-2-ene 

37, although an alternative explanation was advanced in 

which 38 undergoes intramolecular n-addition forming sila-

cycloprop-l-ene 41 which rearranges by formal 1,3-hydrogen 
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Scheme 4 

M^ySiSiHgMe MeHSiî 

35 17 HC-=:C H 

lyje 

. s i—»C —• CH 

r I " 
H 

36 

Me 
\ 

A 
HC^H 

39 

Me H 

37 

IÎ 
Me — Si 

38 

38 

It 
Me 

I 
Si 

A 
41 

Me 

Si— 
/ 
H 42 

Me H 

^si/ 

A 
37 

MeSiHgCECH 

40 

shift to 37. Although unprecendented, it was also recog­

nized that sila-allene 42, formed by C-H insertion (1,2-H 

shift) in 38 could provide still another route for the 

conversion of 38 to 41. Clearly, the possible intercon-
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versions of vinylsilylenes, silacyclopropenes, and sila-

allenes presents a complicated and experimentally difficult 

question to resolve. 

Whether vinylsilylenes rearrange to silacycloprop-2-

enes (e.g. 38 to 37) directly via C-H insertion or via the 

intermediacy of silacycloprop-l-enes (intramolecular 

TT-addition followed by hydrogen atom shift) is an interesting 

question which has probably not been completely decided. 

The TT-addition route is likely a very high energy process, 

since calculations by Gordon et al. indicate that sila-

cycloprop-l-ene lies approximately 49 kcal/mol above sila-

cycloprop-2-ene on the C^H^Si energy surface, and some 51 

kcal/mol above vinylsilylene (41). Yet experimental 

evidence has been accumulated which tends to support the 

intramolecular ^-addition mechanism. Barton and Burns 

found that trimethylsilylvinylsilylene 43, prepared in the 

flash vacuum pyrolysis of disilane precursor 44, afforded 

methoxytrimethylsilane 45, vinyltrimethylsilane 46, and 

1,l-dimethyl-l,4-disilacyclopent-2-ene 47 as the observed 

products (Scheme 5) (42). Their formation was rationalized 

as the result of an initial intramolecular ^-addition of 

43, which produces silacycloprop-l-ene 48, and isomer-

ization of silene 48 to silylene 49, which either extrudes 

a silicon atom (to give the observed vinyltrimethylsilane 
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46) or undergoes y-C-H insertion to disilahousane 50. 

Carbon-carbon bond hemolysis then easily converts 50 to the 

product 47. Caspar has pointed out that rather than extru­

ding a silicon atom, 49 may trap a methoxysilane (e.g., 

unreacted 44 or methoxytrimethylsilane 45) and the inter­

mediate silacyclopropane ejects methoxysilylene 51 (18). 

Scheme 5 

44 OMe 660°C 

-MeOSiMe 

Me^Si 43 

I 

45 
3 

X 
48 

or RSiOMe 
•# 

51 
47 
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A number of other examples of intramolecular C-H 

insertion reactions of silylenes are at present known. The 

earliest suggestion of an intramolecular C-H insertion came 

from the work of Wulff, Goure, and Barton, who provided 

convincing evidence that disilacyclobutanes 52 and 53, the 

ultimate products from the gas phase thermal rearrangement 

of tetramethyldisilene 54, were formed (in 30% and 10% 

yields, respectively) via a mechanism involving silylenes 

55-57 and several key C-H insertion reactions (Scheme 6) 

(43). This mechanism was put forth as an alternative to a 

proposal by Roark and Peddle, who originally discovered the 

rearrangement, which invoked several diradical inter­

mediates (44). 

The proposed mechanism was tested by direct generation 

of silylene 55 (from bis(trimethylsilyl)-chloromethylsilane 

58) which gave 52 and 53 in remarkably similar yields (28% 

and 15% respectively), trapping experiments, and by direct 

generation of silylene 59, an analogue of silylenes 56 and 

57, which afforded the expected 1,1,3-trimethyldisilacyclo-

butane 60 in good yield (Scheme 6). 

The "Barton mechanism" (Scheme 6) for the tetramethyl­

disilene 54 rearrangement provided the earliest (and still 

one of the most spectacular) examples of a number of 

thermal organosilicon reactive intermediate rearrangements 
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Scheme 5 

SiMe-
Si^ ^ 

Me\ 
-• SiZZSi 0 p MeSiSiMe 
Me/ ^Me 1,2-Me «• 

54 ^ 

y \" -Me^SiCl 500°C 

y\ MeSiCKSiMe^) 2 

MeHSi—SiMeg 5g 

1,2-Me/ \^, 

/ 
I 

56 

CH3 

2-H 

P9 / 
57 ̂ ^3 

I I 
/^. /\ 

H2Si.^^^^iMe2 MeHSi^SiHMe 

52 53 

600°c 

Me-SiCH.SiClMe 

I, 
SiMe. 

Me^SiCH.SiMe 

-Me^SiCl 
59 

MeHSx SiMe. 
\X ^ 

60 
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which were to follow in subsequent years. It incorporated 

a number of suggestions which were at the time quite revo­

lutionary including the key features of a 1,2-methyl shift 

in a disilene, and silylene C-H insertion. As the number 

of similar rearrangements known grew, a very rich and 

lively field of organosilicon chemistry evolved. 

There are a number of examples of intramolecular 

silylene insertions into allylic C-H bonds. Methyl-1-(1-

propenyl)silylene 61 cleanly affords 1-methyl-l-silacyclo-

but-2-ene 62 in 37% yield (Scheme 7) (45). Allylic C-H 

insertion (with silacyclobutane ring formation) is appar­

ently favored over intramolecular ir-addition in the rear­

rangement of methallylmethylsilylene 63; the products 

observed were methylenesilacyclobutane 64 (41%) and 1,3-

dimethyl-l-silacyclobut-2-ene 65 (20%) (Scheme 7) (45). Of 

two possible mechanistic routes, initial ir-addition or C-H 

insertion, to the ultimate silacyclobutene product, it is 

possible that C-H insertion is exclusive since 64 rear­

ranged to 65 (which itself is stable) under the reaction 

conditions employed. Pyrolysis of 64 gave a product 

mixture consisting of a 1.0/0.55 ratio of 64/65. 
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At least one C-H insertion is involved in the rear­

rangement of 2-propenylmethylsilylene 66, formed in the 

flash vacuum pyrolysis of 67 (45). Several mechanistic 

routes were proposed by the authors (Burns and Barton) to 

explain the formation of l-methyl-l-silacyclobut-2-ene 62 

as the exclusive product (16%). Favored by the authors was 
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the rearrangement of 2-propenylsilylene 66 to 1-propenyl-

silylene 68 through the intermediacy of silacycloprop-2-ene 

69; once again, however, it remains ambiguous whether a 

silacycloprop-l-ene 70 is involved in the process (Scheme 

8 ) .  

Scheme 8 
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An alternative mechanism involving insertion into an 

allylic C-H bond in 66 and rearrangement to carbene 71 

(perhaps through a "methylene silacyclopropane rearrange­

ment" to silene 72, Scheme 8) would be a high energy 

process and at the time an unprecedented possibility, not 

favored by the authors. A different carbene mechanism is 

however suggested by recent work of Conlin et al., who 

found that methylene silacyclobutane 73 efficiently yielded 

a mixture of silacyclopentenes 74 and 75 (Scheme 9); a 

novel 1,2-silicon shift affording carbene 76 was proposed 

as the pathway (46). In this light, it is not unreasonable 

propose C-H insertion by 66 with formation of methylene-

silacyclopropane 77 and a direct isomerization of 77 to 

carbene 78. Another alternative is via isomerization of 77 

to methylallylsilylene 79. Silylene 79 is known from 

the FVP of disilane 80 to yield l-methylsilacyclobut-2-ene 

62 in comparable yield (Scheme 9) (45). 

Two examples of silylenes which may undergo thermal 

intramolecular C-H insertion are methylbut-3-enylsilylene 

81 and methyl-4-(pent-2-enyl)silylene 82 (Scheme 10) (47). 

Under the reaction conditions employed 81 afforded sila-

cyclopent-3-ene 15 exclusively; the mechanism favored was 

initial allylic B-C-H insertion and vinylsilacyclopropane 

rearrangement of intermediate 83 (path a). A key result, 
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Scheme 9 
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that there was none of the isomeric silacyclopent-2-ene 84 

formed under these conditions suggested that an alternative 

intramolecular it-addition process (path b) did not occur. 

Formation of l,2-dimethyl-l-silacyclopent-3-ene 85 from 82 

was interpreted by the authors as the result of allylic 

C-H insertion; nevertheless this is not demanded as g-C-H 

insertion and rearrangement of vinylsilacyclopropane 86 is 

consistent with the result. 
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Silylenes containing a saturated alkyl chain with 

hydrogens invariably decompose to the corresponding alkenes 

and smaller silylenes as the major process- For example, 

Guselnikov et al. reported the formation of 1-alkenes 87a-c 

from the decomposition of alkylsilylenes 88a-c (generated 
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in the gas phase from the reaction of the corresponding 

1,1-dichlorosilanes with sodium-potassium vapor at 300°C) 

(48, 49). Similarly, Barton and Burns reported the 

formation of 1-butene from methylbutylsilylene 89 (47). 

Both authors proposed silacyclopropanes as intermediates. 

87a-c 

y 
c, R = CH^SiMe^ 

+ MeSiH 

17 

Me 

Me H 
y 

+ MeSiH 

17 

Gusel'nikov et al. also considered the possibility of 

C-H insertion and silacyclobutane formation by such alkyl-

silylenes (49). Despite a careful search for 1-methylsila-

cyclobutane 90 in the pyrolysis products of methylpropyl-

silylene 88a, under conditions where it was expected to be 

stable, it proved impossible to detect its presence at all 

(Scheme 11). Ethene (the major product of silacyclobutane 
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decomposition) was present in only a very small amount (< 

6%). This was in conflict with results of Lopatnikova, who 

found that methylalkylsilylenes (generated in his exper­

iments under comparable conditions via alkali metal vapor 

reduction at 340°C of the corresponding 1,1-dichloro-

silanes) yielded significant amounts of alkenes of reduced 

carbon chain length (50). These were postulated as being 

formed through the intermediacy of silacyclobutanes (Scheme 

11), although the silacyclobutanes themselves could not be 

detected. Thus, methylbutylsilylene 89 yielded 20 parts 

ethene in addition to 7 0 parts butene in his experiments. 

However, despite this result, it was reported in the same 

paper that that methylpentylsilylene 91 did not afford 

ethene; butene was found instead. Formally this may be 

explained as the result of Y-C-H insertion followed by 

decomposition of the intermediate silacyclobutane via 

either Si-C bond hemolysis or initial cleavage of the less 

substituted C-C bond. It is difficult to see why this 

silylene should differ so from the results claimed by the 

author for silylene 89. It is well established in the 

literature that silacyclobutanes decompose predominantly by 

hemolysis of the g-C-C bond; and there is no apparent 

reason why hemolysis of the the more substituted silacyclo­

butane bond would not be favored in this case. 
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Scheme 11 
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Quite interestingly, although no silacyclobutanes were 

apparently formed from the reaction of trimethylsilylalkyl-

silylenes 88b and 88c, these silylenes did undergo 5- or 

e-C-H insertion to form cyclic disilacyclopentane 92b or 

disilacyclohexane 92c, although as a minor process (Scheme 

12) (49). 
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Scheme 12 
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The shock induced pyroylyses of ethylsilane 93 and 

propylsilane 94, which decompose to ethylsilylene and 

propylsilylene 20, have been studied (51, 52). Ethyl­

silylene and propylsilylene 20 were found to yield the 

expected alkenes ethene and propene, respectively, as the 

major products and Arrhenius parameters were determined. 

However, it was reported that propylsilylene 20 decomposed 

not only to propene, but also to ethene, both products 

being formed with about the same activation energy (ca. 31 

kcal/mol) (37, 52). This result agrees with Lopatnikova, 

but is at odds with Gusel'nikov's results (vide supra) (49, 

50). The formation of ethene was rationalized as the 

result of intermediate silacyclobutane formation (path a. 

Scheme 13), the observed activation energy being consistent 

with an estimate based upon the sum of silacyclobutane ring 
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strain (16.8 kcal/mol was used, although other values of 

22.7 and 25.9 kcal/mol have been obtained [53]) and the 

estimated C-H insertion activation energy for silylene 

insertion into the C-H bond of methane (ca. 17 kcal/mol). 

However the authors failed to observe any silacyclobutane. 

Silacyclopropane formation (path c) would be expected to 

involve considerably more ring strain than silacyclobutane 

ring formation, resulting in a considerably higher 

activation energy (^ 44 kcal/mol was estimated, assuming, 

as with silacyclobutane formation, that the transition 

state incorporates most of the strain energy of the 

developing ring) than the measured activation energy (ca. 

31 kcal/mol). Therefore, an alternative possibility, 

decomposition of propylsilylene to propene and silylene via 

a direct, concerted (four-center) elimination of silylene 

was proposed (path d) (52, 54). It should be pointed out 

that although these authors have at times favored the 4-

center concerted process for this reaction, they have at 

other times seemed to favor the silacyclopropane inter­

mediate (36). A similar concerted process forming ethene 

and silene 13 (path b. Scheme 13) was suggested (though not 

favored) as an alternative to path a (52). 

It is evident that at this point considerable uncer­

tainty existed both regarding the products formed from the 
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alkylsilylene decomposition, and the mechanism(s) involved. 

Are ethene and propene both formed from n-propylsilylene 

20, or solely propene? Does the major path of alkyl­

silylene decomposition proceed via silacyclopropane inter-

mediacy, or is it rather a direct and concerted process? 

One of the goals of this dissertation research has been to 

gather additional evidence regarding the identity of the 

true products by generating appropriate silylenes from 

alternative precursors and to acquire direct evidence 

regarding silacyclopropane intermediacy. 

Scheme 13 

Me 

13 18 
Me 
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Thermal Reactions Involving Silacyclopropanes 

As a class of compounds, silacyclopropanes (siliranes) 

have proved remarkably more difficult to isolate and appear 

to be considerably more reactive than would be expected 

from a comparison with other silacarbocycles, e.g., the 

silacyclobutanes (55). Although silacyclobutanes and 

disilacyclobutanes have long been known and four atom rings 

containing silicon (4c) possess considerable thermodynamic 

stability, silacyclopropanes are known chiefly as reactive 

intermediates. Only a few completely isolable silacyclo­

propanes have been prepared including bis(cycloprop-

ylidene)siliranes 95 and 96, which are apparently 

stabilized by overlap of the cyclopropyl Walsh orbitals 

with orbitals (possibly the d orbitals) on silicon (56-59). 

Concentrated solutions (with spectroscopic character­

ization) of other silacyclopropanes have also been 

prepared, for example compounds 97-100 (60-62). 

Silacyclopropanes are quite reactive compounds and 

will react with virtually any electrophilic or nucleophilic 

reagent. They are also subject to radical attack. Cleavage 

generally occurs at the ring Si-C bonds to give 1,3-

addition products. Silacyclopropanes are attacked by such 

reagents as oxygen, water, alcohols, amines, hydrogen 
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sulfide, amides, organolithium reagents, lithium metal, 

strong acids, and carboxylic acids. As a measure of their 

reactivity, 96 reacts with the enol form of cyclohexanone 

at 65°C to form a silyl enol ether, and 37 reacts with CCl^ 

in THF solution at room temperature in a vigorously 

exothermic reaction to give products indicative of radical 

(CI* or "CCl^) attack on silicon (55, 63). 

The formation of silacyclopropanes from the addition 

of silylenes to olefins seems a logical process for sila-
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cyclopropane formation. In 1964 Skell and Goldstein report­

ed the formation of vinyldimethylsilane 101 from the reac­

tion of dimethylsilylene 26 (generated in the gas phase 

from the reduction of dichlorodimethylsilane 102 with 

sodium-potassium vapor) with ethene; the observed product 

was rationalized as the result of isomerization of 1,1-

dimethylsilacyclopropane 103 (64). The reaction of nucleo-

31 genie silylene 18 ( SiHg) with ethene has been reported, 

based upon the observation of a silacyclopropane/phosphine 

adduct 104 which could be formed from silacyclopropane 105 

(65). Other silylene additions to ethene have been report­

ed, including the reaction of difluorosilylene 106; the 

intermediate silacyclopropane can also insert another mol­

ecule of difluorosilylene to form an unusual 1,2-disila-

cyclobutane (61, 66-68). Addition of 106 to 1,2,2-tri-

fluoroethene generates fluorinated silaethenes which can be 

rationalized as resulting from silacyclopropane inter-

mediacy (66, 67). These results are summarized in Scheme 

14. 

Since these early reports of silacyclopropane for­

mation the extreme thermal instability of silacyclopropanes 

has become known. Seyferth and Annarelli have found that 

hexamethylsilirane 97 thermally extrudes dimethylsilylene 

26 at less than 100°C (69,- 70). Given this apparent rever-
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sibility of the addition of silylenes to C=C double bonds, 

detection of silacyclopropane formation using high temper­

ature methods of silylene generation is only possible where 

the silacyclopropane may react to form stable products as 

an alternative to silylene elimination (several examples 

Scheme 14 
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have already been presented). Atwell and Weyenberg's 

assertion (26) that silylene addition to double bonds could 

not compete with insertion into Si-0 bonds may very well be 

true; it is possible however that it occurs but simply goes 

undetected. Such important problems as the stereo-

specificity of silylene addition to olefins have thus only 

recently been investigated employing photolytic generation 

of silylenes or dimethylsilylene 26 production from the 

thermal decomposition, under relatively mild conditions, of 

hexamethylsilirane 97. 

The stereochemistry of silylene addition to olefins 

has been investigated by Tortorelli and Jones who found 

that either dimethyl- or diphenylsilylene (26 or 107), 

photochemically generated from polysilane precursors in 

solutions of or E-2-butene and methanol-d afforded 

deuterated s-butylmethoxysilanes, 108 (Scheme 15) (71). 

The g hydrogens in 108 are diastereotopic, and it was found 

that Z- or E-2-butene gave, respectively, diastereomers 

108a and 108b. Since absolute configurations could not be 

determined, this experiment does not tell by itself whether 

the addition is cis or trans, but it does imply that both 

the silylene addition and the methanolysis must be stereo-

specific. The addition followed by methanolysis of 26 or 

107 also occured stereospecifically to cyclopentene and 
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cyclohexene, implying that the addition reaction must be 

cis. Trapping of the siliranes 109a and 109b formed from 

cyclohexene in methanol-d and NMR analysis of the products 

110a and 110b revealed the deuterium to be incorporated in 

Scheme 15 
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the axial position. Assuming that the bulky silyl group 

preferentially occupies an equatorial position, then the 

methanolysis of silacyclopropanes 109 must also be cis, 

i.e., the C-D bond is formed cis to the Si-C bond formed 

(Scheme 15). 

These elegant experiments of Tortorelli and Jones 

using photolytically generated silylenes have been sub­

stantiated by Seyferth and coworkers, who found that hexa-

methylsilirane 97 thermally transferred dimethylsilylene 26 

at less than 100°C stereospecifically to various olefins, 

resulting in the formation of new siliranes (72). Ther­

molysis of 97 in excess or E-l-propenyltrimethylsilane 

111 was found to afford silacyclopropanes 112 a or b which 

NMR analysis indicated were formed with stereospecific 

retention of the Z- or E-relationship of the trimethylsilyl 

and methyl groups. 
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The thermal decomposition of silacyclopropanes has 

been studied in less detail and remains more ambiguous. 

Although hexamethylsilirane 97 decomposes with apparent 

extrusion of dimethylsilylene 26 and in many experiments 

gives as sole reported products compounds indicating trans­

fer of 26, other experiments suggest that the Si-C bond may 

undergo homolytic cleavage. The earliest confirmed example 

of this may be found in the work of Skell and Goldstein, 

who found that the ultimate product of the dimethylsilylene 

26 addition to ethene was vinyldimethylsilane 101; its 

formation may be rationalized as the result of initial Si-C 

bond hemolysis followed by 1,2-H atom shift (Scheme 14, 

vide supra) (64). More suggestive is a result of Seyferth 

and Annarelli, who found that hexamethylsilirane 97 when 

thermalized in the presence of styrenes afforded not the 

anticipated silirane products; rather sole formation (in 

> 50% yields) of silacyclopentanes 113 was observed (70). 

Furthermore, thermolysis of spirocyclic silirane 96 did not 

transfer dimethylsilylene in trapping experiments using 

triethylsilane; only dimerization of starting material 

(structure 114 was suggested for the dimer, but without 

spectral proof) was found to occur (69). The mechanism of 

these processes is unproven; they may be the result of a 

direct reaction of the Si-C bond, or diradicals (e.g., 115) 
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may be involved. 

Seyferth and Annarelli have suggested that extrusion 

of dimethylsilylene from 97 may proceed via diradical 115 

(70); this should be viewed in the light of the principle 

of microscopic reversibility and the observed stereo-

specific (and possibly concerted) cis addition of silylenes 

to olefins. If the addition of silylenes to C=C double 

bonds proceeds exclusively by a concerted process, then so 

must the reverse reaction also occur. One possibility is 
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that diradical 115 is formed in the stereospecific addition 

of dimethylsilylene 26 to C=C double bonds, with ring 

closure proceeding substantially more rapidly than bond 

rotation in 115. However the reaction of 97 with styrenes 

implies the existence of a biradical which, if formed, 

persists in solution long enough to allow significant 

reaction with the styrenes (73). Clearly many details of 

this energy surface have yet to be elaborated both experi­

mentally and through calculations-

A special case of silacyclopropane formation from the 

silylene/olefin reaction is the addition of silylenes to 

conjugated 1,3-dienes. The initally formed vinylsilacyclo-

propanes have occasionally been trapped or spectroscopic-

ally observed, although they tend to undergo facile isomer-

ization to silacyclopentenes. Due to the thermal stability 

of silacyclopentenes silylenes are effectively and 

irreversibly trapped by 1,3-dienes at most temperatures 

employed, and the reaction of silylenes with conjugated 

dienes can be detected even in the presence of excellent 

silylene traps including methoxysilanes and hydridosilanes. 

Consequently trapping with 1,3-butadienes has become a 

widely employed and characteristic test for silylene inter-

mediacy. As an example, Jenkins et al. reported that 

silylene 18 may be trapped by 1,3-butadiene to form sila-
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cycyclopent-3-ene 16; the relative rate of trisilane 116 

formation via insertion of 18 into disilane 30 employed as 

the silylene precursor to addition to 1,3-butadiene was 

estimated to be ca. 4.2/1.0 (74). 

krel= 4-2 

HgSiSiHg ^ HgSi. ^ H^SiSlH^SiH^ 

30 18 116 

I 
''rer 1-° 

A  — [ Q i H .  
16 

Chemical trapping of intermediate vinylsilacyclo-

propanes has been accomplished by Ishikawa et al., who 

photolyzed 2-phenylnonamethyltrisilane 117 to generate 

silylene 118 in the presence of 2,3-dimethyl-l,3-butadiene 

119 (62). Addition of methanol resulted in the production 

of methoxydisilanes which indicated the intermediacy of 

vinylsilacyclopropane 120. Compound 120 was subject to 

further photolysis and formation of silacyclopent-3-ene 

121. 
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Direct spectroscopic detection of a vinylsilacyclopro-

pane was reported by Nakadaira et al., who observed that 

photolysis of disilacyclohexadiene 122 afforded a stable 

intermediate vinylsilacyclopropane 123, observable by NMR, 

which thermally converted to bicyclic 124. Photolysis of 

124 regenerated 123 (Scheme 16) (75). 

Scheme 16 
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The thermal vinylsilacyclopropane rearrangement prob­

ably does not involve a concerted 1,3-Si shift. Thus Lei 

et al. found that the addition of silylene 18 (generated in 

a flow pyrolysis of disilane 30) to 2,4-hexadienes was not 

a stereospecific process; a 2/1 ratio of silacyclopentenes 

125a-b was obtained from cis/trans 2,4-hexadiene and a 6/1 

ratio was obtained from the trans/trans isomer (76). This 

was rationalized as the result of silylene ^-addition which 

forms silirane 126 which undergoes Si-C bond hemolysis. 

The resulting diradical 127 then closes to products 125. 

Me. ^2 
: SiHg + 

18 

Si 

Me 
Me 

126 

i 
Me 

125a=cis 

125b=trans 

Me 

H_Si 

Products from C-C bond hemolysis of vinylsilacyclopro-

panes and rearrangement have also been observed. Lei et 

al. found that addition of dimethylsilylene 26 to 2,4-

hexadienes afforded products 128a-b, rationalized as the 
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result of vinylsilacyclopropane C-C bond cleavage, in 

addition to silacyclopent-3-ene 129 resulting from Si-C 

bond cleavage (76). The ratio of products 128/129 was 4/1 

when the diene employed was trans/trans 2,4-hexadiene, and 

14/1 when cis/trans isomer was used (Scheme 17). 

Scheme 17 
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Cyclic 1,3-dienes acting as silylene traps afford 

similar results. For example, in the case of cyclopenta-

dienes, the intermediate silacyclopropanes undergo vir­

tually exclusive C-C bond scission, forming silacyclohexa-

dienes (77). Presumably the relief of ring strain provides 

a driving force for ring expansion. Cleavage of the C-C 

bond can also be exclusive where the 1,3-diene is sub­

stituted so as to stabilize the resulting diradical. 

Sakurai and coworkers found that the addition of dimethyl-

silylene 26 to 1,4-diphenyl-l,3-butadiene afforded only 

1,l-dimethyl-4,5-diphenyl-l-silacyclopent-2-ene 130 (78). 

=4.6/6.0) «Ph 

Hemolysis of the C-C bond also provides a rationale 

for the observation that at higher temperatures both sila-

cyclopent-2-ene and silacyclopent-3-enes are observed from 

trapping of silylenes with 1,3-butadiene (see for example. 
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Conlin and Wood [79]). At 750°C Lei and Caspar found that 

1,l-dimethyl-l-silacyclopent-3-ene 74 was converted to the 

isomeric 1,l-dimethylsilacyclopent-2-ene 75 in 16% yield 

(Scheme 18) (80). Extrusion of dimethylsilylene also 

occurred and 1,3-butadiene was obtained in 53% yield. The 

unsymmetrical 1,1,2-trimethylsilacyclopent-3-ene 131, in 

addition to dimethylsilylene extrusion, also formed, upon 

pyrolysis, products 132 and 133 which demand a formal C-C 

bond shift in the presumed silacyclopropane intermediates 

134 and 135, perhaps through diradicals 136 and 137. The 

product 138 of an ene-reaction of vinylsilacyclopropane 134 

was also found. By itself, this reaction does not demand 

the involvement of the diradical intermediates suggested by 

Caspar and shown below (Scheme 18), but it is demanded by 

the principle of microscopic reversibility if it is true, 

as is believed (vide supra), that the rearrangement of the 

corresponding vinylsilacyclopropanes to the same product 

silacyclopentenes is a stepwise process through biradical 

intermediates. 

In summary, it is clear that despite the difficulty in 

their synthesis and isolation, silacyclopropanes are viable 

intermediates, the existence of which is supported by an 

overwhelming amount of evidence. Silylenes add to C=C 

double bonds stereospecifically in what is undoubtedly a 
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cis and possibly a concerted manner. By microscopic 

reversibility then, silacyclopropanes may extrude silylenes 

by a concerted reductive elimination. Silacyclopropanes 

also undergo competitive Si-C and C-C bond hemolysis, and 

although all the factors which control the relative rates 

of silylene extrusion, and Si-C or C-C bond hemolysis are 

not clear, such factors as ring strain or incorporation of 

stabilizing substituents at the ring carbons are clearly 

important. 

Scheme 18 
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RESULTS AND DISCUSSION 

Pyrolysis of 1-Hydridosilacyclobutanes 

As discussed in the Historical section the pyrolysis 

of silacyclobutanes is a generally clean reaction with g-C-

C bond hemolysis the predominant initial decomposition step 

leading to silene and ethene formation. However the decom­

position of the parent system, silacyclobutane 12 is 

anomalous in that propene is also formed in a competitive 

process. To explain this Conlin and Gill proposed initial 

Si-C bond breakage and decomposition of the resulting di-

radical 19b to cyclopropane and silylene 18 (Scheme 19) 

(12). This was favored on thermodynamic grounds over a 

chelotropic extrusion of silylene 18 and cyclopropane. 

Scheme 19 
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In contradiction to Conlin and Gill's report of cyclo­

propane formation in the silacyclobutane 12 pyrolysis, 

Davidson et al. have found that cyclopropane is not formed 

in the silacyclobutane pyrolysis (14). This was sub­

sequently confirmed by Conlin and Kwak for the pyrolysis of 

1-methylsilacyclobutane, where the formation of propene, 

but not cyclopropane, was reported (81). The formation only 

of propene, under conditions where cyclopropane is stable, 

casts doubt on the validity of the proposed mechanism of 

Scheme 19. In addition to this, the rationalization of 

Conlin and Gill seems unreasonable in the light of known 

substituent effects on Si-C bond dissociation energies, 

which indicate that hydrogen substitution on silicon should 

have an insufficient effect to explain why silylene 18 and 

propene should be eliminated from 12 when propene and 

dimethylsilylene 26 are not formed from dimethylsila-

cyclobutane 1. Based upon this, an alternative mechanism 

was suggested to account for the unique involvement of the 

silyl hydride in this reaction: a-elimination of a methyl 

group from silacyclobutane 12 to form propylsilylene 20, 

which subsequently decays to silylene 18 and propene 

(Scheme 20). This suggestion has precedent in the litera­

ture, where elimination of methane from silanes to form 

silylenes is a known process (34). The decomposition of 
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alkyl silylenes to alkenes and silylenes is also a known 

process, usually rationalized as proceeding through sila-

cyclopropane intermediates (47, 49, 50), although a direct, 

concerted decomposition has also been suggested (52, 54). 

Investigation of the kinetics of silacyclobutane 12 

decomposition at the University of Leicester, England, by 

Davidson et al. determined the Arrhenius parameters for 

propene formation, with the results log A = 14.4, = 57.8 

kcal/mol (14). These numbers appear to be in accord with 

the proposed mechanism of Scheme 20 if it is assumed that 

most of the silacyclobutane ring strain (values from 16.8 

to 25.9 kcal/mol have been found [53]) is released in the 

transition state of the initial, rate determining a-elim­

ination. With this assumption, a reduction in the acti­

vation energy by 15 kcal/mol relative to dimethylsilane 

(which eliminates methane with an activation energy of 7 3 

kcal/mol, Table 1), a reasonable analogy to sila­

cyclobutane, is not unexpected. 

If the mechanism presented in Scheme 20 is valid, then 

pyrolysis of 1-deuterated silacyclobutanes would provide an 

appropriate test of the mechanism. 

Silacyclobutane 12 and the dideuterated analogue 1,1-

dideuterio-l-silacyclobutane 12-d2 were easily prepared by 

the method of Laane, reduction of 1,1-dichloro-l-sila-
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gcheme 20 

12 20 

iSiHg 4 

18 
.e 

cyclobutane with LiAlH^ or LiAlD^ (82). Compound l^-dg was 

prepared in this fashion with quantitative deuteration. 

of an effervescent pyrolysate, with most of the mass 

recovered boiling off upon warming to room temperature at 1 

atm. With this procedure, only a 15% ultimate mass 

recovery was obtained, containing mostly recovered 12 (8% 

GLC yield). 

A convenient method was devised for analyzing the 

volatile gases formed in this and similar pyrolyses. The 

FVP was performed and the products were trapped in the 

usual fashion in a liquid nitrogen cooled trap at -196°C. 

A second trap consisting of a 50 or 100 mL gas collection 

flask equipped with a greaseless vacuum stopcock was placed 

between the initial trap and the vacuum source. After 

with no silyl hydride observed by NMR. 

FVP of undeuterated 12 at 710°C resulted in formation 
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pyrolysis, the two traps were isolated from the hot zone 

and the vacuum source, and the products were warmed to room 

temperature under high vacuum, and then condensed into the 

gas bulb at -196°C. Gases formed and collected in this 

fashion could be analyzed directly by sampling through a 

septum. The sampled gases were chromatographically ana-

lyzable on either a 6' Unibeads 2S column or a 30' 23% SP-

1700 on Chromosorb-P-AW columnn. Analysis of the samples 

by MS could be obtained using the Unibeads column attached 

to a Finnegan 4023 Gas Chromatograph-Mass Spectrometer 

(GCMS). Alternatively, bromine could be placed in the gas 

bulb prior to gas collection and the volatile alkenes 

determined by analysis of the dibromoalkanes formed. 

In this fashion, when the pyrolysis of 12 was repeated 

and the gases were collected and brominated, 1,2-dibromo-

ethane 139 and 1,2-dibromopropane 140 were found in 41-47% 

and 11-13% yields, respectively. This indicates that ca. 

80% of the decomposition proceeds via the usual process of 

silacyclobutane decomposition, initial g-C-C bond hemolysis 

forming diradical 19a which decays to silene and ethene. 

The propene pathway accounts for ca. 20% of the decompo­

sition (Scheme 21). 
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Scheme 21 
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FVP of 12-d2 at 710°C afforded an effervescent pyro-

lysate upon warming to room temperature at 1 atm pressure; 

the pyrolysate after gas liberation (3 8-43% mass recovery 

in two runs) consisted predominantly of unreacted 12-d2. 

Isolation of the recovered starting material by preparative 

1 2 
GLC and analysis by H NMR and H NMR showed no scrambling 

of deuterium onto the carbons of the silacyclobutane ring. 

A small but variable silyl hydride formation was detected 

by NMR, amounting to 0.14-0.16H for two runs (loss of 

deuterium with a corresponding 7-8% silyl hydride for­

mation) . 

When the volatile gases formed were collected and ana­
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lyzed by GC and GCMS, ethene and propene were found in 

approximate relative amounts of 86 parts and 14 parts re­

spectively. The mass spectra indicated minimal deuteration 

of the ethene. The propene was much more highly 

deuterated. 

Table 2 presents the results of the GCMS analysis of 

the propene and ethene formed from the pyrolysis of 12-d2. 

Run at the same time and conditions were samples of authen­

tic, undeuterated ethene and propene. The per cent compo­

sition of dp, d^ and dg species were calculated by the 

method of Biemann (83). Using this method, the measured 

relative intensities of the undeuterated ethene and propene 

M, M+1, and M+2 peaks were used to calculate corrected 

ion intensities for the ethene and propene mass spectra, 

which represent the contributions to these ion intensities 

by the d^, d., and d, species. The mol % d^, d^ or d? 

species is easily calculated as the percent of the cor­

rected ion intensity of the M, M+1 or M+2 species to 

the total corrected ion intensity. 

As an example of the use of this method, consider the 

deuterated ethene in Table 2. The M+ ion intensity for 

ethene from H-d^ was 100.00 (arbitrary units); the 

measured M+1 intensity was 15.87. Since there is no M-1 

peak in the reference undeuterated ethene, the value of 



www.manaraa.com

59 

Table 2. Deuterium incorporation in ethylene and propylene 
from PVP of 12-d^ 

Mol % 
Ion Corrected deuterated 

Compound Ion Intensity intensity ̂  species^ 

ethene M-2 2.76 
(M = 28) M-1 1.38 

M 100.00 100.00 86 (dO) 
M+1 15.87 13.63 12 (dl) 
M+2 3.12 2.74 2 (d2) 

propene M-2 3.89 
(M = 42) M-1 8.06 

M 48.06 30^ 19 (do) 
M+1 100.00 99^ 62 (dl) 
M+2 34.72 30^ 19 (d2) 
M+3 4.72 

^18 eV scan obtained on Finnegan GC-MS with 6' Unibeads 
2S column. 

Measured ion intensity of deuterated sample propene and 
ethene. 

"^Calculated by the method of Biemann (83). Reference 
spectra: ethene, M-2 = 2.41, M-1 = O.QO, M = 100.00,- M+1 = 
2.24, M+2 = 0.02; propene, M-2 = 3.98, M-1 = 17.60, M = 
100.00, M+1 = 4.52, M+2 = 0.08. 

Estimated as described in text. 

100.00 must be due exclusively to d^ ethene- The M+1 peak 

from undeuterated ethene is 2.24 units, thus contributes 

2.24 units to the measured M+1 peak in the deuterated 

sample, and d^ must then contribute 15.87 - 2.24 = 13.53 

units, which is the corrected ion intensity for the M+1 
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peak. In the same fashion, the contributions of dg and d^ 

ethene are subracted from the M+2 peak to obtain the cor­

rected M+2 intensity, 2.74. The per cent dg, dj^ and d2 are 

found to be 100.00/116.37 = 86%, 13.63/116.37 = 12%, and 

2.74/116.37 = 2%. 

This calculation works well for ethene in this example 

because there is no M-1 peak in the reference, undeuterated 

ethene. This is not the case for propene, which shows a 

sizable (17.60 relative %) M-1 peak, and therefore the 

measured M+ ion cannot be taken as a straightforward quan­

tification of the amount of d^ propene in the sample. 

Since the major species in the deuterated sample is clearly 

d^ propene, the M+ ion intensity includes a contribution 

from d^ propene. Since there are five hydrogens in 

propene and only one deuterium, an approximate estimate of 

this contribution may be made by assuming that H loss will 

significantly exceed D loss and simply taking the relative 

M-1 ion intensity from undeuterated propene as the contri­

bution of d^ to M+. This gives 30 = 48 - 18 as a rough 

estimate of the amount of d^ species present in the deu­

terated sample. Continuing the calculation in the normal 

fashion gives an estimate of 19% dg, 62% d^, and 19% 0-2 as 

the composition of the sample. 

Regardless of the uncertainty in the exact numbers, it 
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is clear that propene is the major species of propene 

formed in the pyrolysis of 12-d.̂ . This experiment con­

stituted the first experimental test of the mechanism pro­

posed in Scheme 20 and the result is consistent with 

initial formation of propylsilylene 20 by a-elimination and 

hydrogen (or deuterium) transfer, and inconsistent with 

either a direct chelotropic extrusion of silylene 18 or the 

diradical mechanism favored by Conlin and Gill (12) (Scheme 

19), both of which processes would predict the formation of 

mostly dg propene. 

In order to confirm the analysis of deuterated propene 

in the product mixture, and to provide a method of deter­

mining the location of deuterium in the propene formed from 

12-d2, the pyrolysis was repeated and the product gases 

trapped in bromine. The 1,2-dibromoethane 139 (55%) and 

1,2-dibromopropane 140 (10%) formed were analyzed by mass 

spectral, NMR, and NMR methods. The experiment was 

repeated twice (Runs 1 and 2). Yield and mass spectral data 

are presented in Table 3, and the data for integration of 

2 the H NMR of the dibromopropane 140 spectra are presented 

in Table 4. The H NMR spectrum of the dibromopropane 

140 from Run 1 is reproduced in Fig. 1. Runs 1 and 2 in 

Table 3 correspond to Runs 1 and 2 in Table 4. 

The mass spectral results (Table 3) for the brominated 
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olefins are in approximate agreement with the results esti­

mated by examining the gases directly. The dibromoethane 

139 formed shows somewhat more d^ species (14-21%, average 

18%) than found previously for ethene (12%). Nevertheless, 

agreement is found in that dg is by a large measure the 

major species present in both experiments. Similarily, d^ 

dibromopropane 140 is in both cases found to be the major 

species detected (53-62%, average 58%) vs. 62% from the 

direct analysis of propene. 

There is a significant variation in the amount of dg 

dibromopropane 140 in the two runs (10% and 25%, Table 3), 

although the average, 18% 0-2/ is close to the estimate 

found previously for the dg propene (19%) by direct GC-MS 

examination of the gases formed. The cause for this 

variance is not known, although one factor may be that the 

method of calculation employed tends to be increasingly 

less accurate for d^ species as n increases (83). In 

addition, different instruments were employed for each run. 

Run 1 was analyzed by GC-MS (Finnegan Model 4023 GC-MS), 

integrating the ion intensities over the entire chromato­

graphic peak area, and Run 2 was analyzed as neat samples 

(isolated by preparative GLC) on a Kratos MS-50, which 

became available during the course of this research. 
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Table 3. Yield and percent deuterium incorporation for 1,2-
dibromoethane 139 and 1,2-dibromopropane 140 
formed from flash-vacuum pyrolysate of 12-d2 

Mol % 
Yield Ion Corrected deuterated 

Run^ Compound (%) Ion Intensity intensity^ species^ 

139 — ° M-1 1.50 — — — — 

(M = 186) M 51.27 51.27 78 (do) 
M+1 16.53 13.78 21 (dl) 
M+2 100.00 1-08 1 (d2) 
M+3 27.09 
M+4 53.00 
M+5 13.65 
M+6 3.04 

140 — M-1 — V — — 

(M = 200) M 1.18 1.18 19 (dO) 
M+1 3.33 3.32 53 (dl) 
M+2 3.89 1.55 25 (d2) 
M+3 6.72 0.16 3 (d3) 
M+4 4.15 0.00 0 
M+5 3.39 
M+6 1.39 — — 

^Run 1, Finnegan 4023 GC-MS, 20 eV; run 2, Kratos MS-50 
Mass Spectrometer, neat samples, 26 eV. 

^Measured ion intensity of deuterated samples. 

^Calculated by the method of Biemann (83). The fol­
lowing reference spectra were used. Run 1: undeuterated 
139, M-1 1.67, M 52,22, M+1 2.80, M+2 100.00, M-i-3 1.85, M+4 
48.27, M+5 0.97; undeuterated 140, M-1 0.05, M 6.25, 
M+1 0.08, M+2 12.20, M+3 0.38, M+4 5.68, M+5 0.11. Run 
2: undeuterated 139, M-1 5, M 265, M+1 15, M+2 515, 
M+3 15, M+4 251, M+5 6; undeuterated 140, M-2 16, M-1 
3, M 203, M+1 10, M+2 394, M+3 15, M+4 191, M+5 7. 

d 
Yield not obtained. 
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Table 3. (continued) 

Mol % 
Yield Ion Corrected deuterated 

Run Compound (%) Ion intensity intensity species 

139 55 
(M = 186) M 169 169 81 (dO) 

14 (dl) 
1 (d2) 
3 (d3) 

140 10 
(M = 200) 

M—1 4 
M 169 169 
M+1 40 29 
M+2 333 3 
M+3 74 7 
M+4 167 
M+5 36 

M-2 16 — — 

M-1 3^ 
M 43® 43 
M+1 105 103 
M+2 105 17 
M+3 206 2 
M+4 100 — 

M+5 103 
M+6 38 

26 (dO) 
62 (dl) 
10 (d2) 
1 (d3) 

^Measured mass m/e 199.88362 (C^Hg'^^Br^) 

Isolation of the dibromopropane 140 from 12-d^ fay pre-

2 parative GLC gave a sample, the H NMR or which clearly 

shows that the deuterium incorporated is scrambled through­

out the molecule. The integrated intensities for the deu­

terium signals from Runs 1 and 2 are presented in Table 4. 

From this data it is apparent that the deuterium in the 140 

is ca. 21% incorporated at C17% at C2f and 63% at Cg, 

where the carbons are numbered according to the usual lUPAC 
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2 Figure 1. H NMR of 1,2-dibromopropane 140 from 
bromination of the pyrolysis products from the 
FVP of 12-d2 (benzene solution, 46 MHz; insert 
indicates assignment of the resonances for 140; 
the peak at 5 7.15 is natural abundance 
deuterated benzene) 
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Table 4. Deuterium distribution in 1,2-dibromopropane 140 
from pyrolysis of 12-d2 

Shift, ppm. Relative, 
Run (6 scale) Carbon intensity 

2.89 1 11.4 

3.18 1 10.7 

3.51 2 17.1 

1.26 3 62.1 

2.88 1 10.9 

3.17 1 9.5 

3.52 2 16.8 

1.25 3 62.9 

NMR spectra determined on a Bruker WM-300 
spectrometer (46 MHz) in benzene solution. 

^Chemical shifts referenced to natural abundance 
deuterium in benzene solvent. 

"^Signal assigned for deuterium substituted on Ci, C2' 
or C3. The two sites on Ci are diastereotopic. The 
numbering is according to the scheme: 

C^Br—CgBr— 

^Relative signal intensity normalized to 100 total. 

nomenclature. Completely random distribution of the deu­

terium predicts 34% incorporation at C^, 17% at C2f and 50% 

at Cg. Hence there is some favoring of incorporation of 

deuterium at Cg (corresponding to the methine position in 
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the propene formed) and at (the allylic position in 

propane). 

To sum up the results from FVP of silacyclobutane 12 

and 12-d2f pyrolysis of 12 at 710°C afforded as products 

propene and ethene in an approximately 1/4 ratio, with 

nearly complete decomposition and 8% starting material 

recovery. The use of dideuterated 12-d^ afforded labelled 

ethene and propene (in a 1.0/5.5 ratio determined for one 

run from the yields of dibromides formed upon bromination). 

The- ethene and propene were both labelled, average values 

being for the ethene 82% d^ and 16% d and for the pro­

pene, 21% dg, 59% d^, and 18% d^. The propene was deter­

mined to have the deuterium label positionally scrambled, 

although incorporation at the allylic position was somewhat 

favored. Recovery of the starting material showed the 

pyrolysis proceeded with ca. 7-8% deuterium exchange in the 

labelled silacyclobutane via silyl hydride formation; no 

incorporation of deuterium onto the carbons of the sila­

cyclobutane ring was found by NMR. 

To test the effect of a single deuterium substituted 

on silicon 1-methyl-l-deuterio-l-silacyclobutane 90-d^ 

(prepared in an analogous fashion to 12-d^ by LiAlD^ 

reduction of 1-chloro-l-methyl-l-silacyclobutane) was pyro-

lyzed at 710°C. Ethene and propene were both formed. 
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although the relative amount of propene formed was sig­

nificantly less than in the case of 12 or 12-â.̂ . Analysis 

of the gases by GC-MS indicated that both the ethene and 

propene were deuterated, deuteration of the ethene being 

minimal (< 10% d^), while most of the propene was deuterated 

(> 50% d^). Unfortunately the propene peak was significant­

ly contaminated by impurities and reliable numbers for 

deuterium incorporation could not be directly obtained. 

However bromination of the products from the pyrolysis 

provided the needed information. Dibromoethane 139 (29%) 

and dibromopropane 140 (1%) were both detected in the 

product mixture. The mass spectral results and calculated 

deuterium incorporation are presented in Table 5. These 

results show that there is very little d^ dibromoethane 139 

(6%), and the remainder is exclusively d^. The dibromo­

propane 140 is exclusively d^ (68%) and d^ (32%) with no d^ 

detectable. 

NMR of the dibromopropane from 90-d^ (Fig. 2) 

showed very little scrambling. A single sizable peak was 

found at 5 1.26, the chemical shift of the methyl resonance 

(benzene solution) in 140. Small peaks may be present at 

ca. 6 3.0, 3.3, and 3.6 which correspond to the expected 

positions of the other resonances in the NMR of 140, how­

ever, this is uncertain due to the fact that only a few 
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Table 5. Percent detuerium incorporation in 1,2-
dibromoethane 139 and 1,2-dibromopropane 140 from 
flash-vacuum pyrolysate of 90-d^ 

Mol % 
Ion Corrected deuterated 

Compound Ion intensity^ intensity species ̂  

I39C M-2 7 
(M = 186) M-1 3 

M 147 
M+1 16 
M+2 278 
M+3 27 
M+4 127 

140^ M-2 1 
(M = 200) M-1 1 

M 10 
M+1 22 
M+2 20 
M+3 41 
M+4 12 
M+5 20 
M+6 2 

147 94 (dO) 
10 6 (dl) 
0 0 (d2) 
9 

10 32 (dO) 
21 68 (dl) 
0 0 (d2) 

^Measured intensity determined on a Kratos MS-50 Mass 
Spectrometer, neat samples. 

'^Calculated by the method of Biemann (83) using the 
following reference spectra determined for undeuterated 
139 and 140: 139, M-1 1, M 171, M+1 7, M+2 330, M+3 9, 
M+4 160; 140, M-1 0, M 35, M+1 2, M+2 69, M+3 2, M+4 
33, M+5 1. 

Q 
21 eV scan. 

^25 eV scan. 
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benzene, 5 7.15 

(Br) C, (Br) 

(A), (B) 

5 4.00 

(A), 

Figure 2. NMR of 1,2-dibromopropane 140 from bromin-
ation of the flash-vacuum pyrolysate of SO-d^ 
(benzene solvent, 46 MHz; insert shows assign­
ment of resonances of 140; the peak at ô 7.15 is 
natural abundance deuterated benzene) 



www.manaraa.com

71 

milligrams of sample could be isolated for spectral 

analysis due to the low yield of propene formed, resulting 

in a poor signal to noise ratio. 

Thus the only species of deuteriopropene detected in 

the pyrolysis of 90-d^ is 3-deuteriopropene 142. This is 

consistent with the mechanism of Scheme 22, where initial 

deuterium transfer should form propylsilylenes 20 and 88a 

initially deuterated in the position. In the absence of 

complete label scrambling enhanced incorporation of deu­

terium onto the allylic position of the propene formed 

would be expected, and this has been found to be the case 

for both 12-d and 90-d, . 
2 1 

Scheme 22 

D 

I ~l • •HXSI: + =4 

X = D, 12-d^ X = D, 20-d2 X = D, 18-d^ 142 

X = Me, 9Q-d^ X = Me, SSa-d^ X = Me, 17 

As a control experiment, 3-deuteriopropene 142 was 

prepared in 27% yield by quenching allyl Grignard reagent 

with DgO. When the propene 142 evolved was bubbled through 

liquid bromine, 1,2-dibromo-3-deuteriopropane (35% yield) 
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140-d^ was formed with 96% incorporation of a single deu­

terium label, the remainder being composed of undeuterated 

species. When the 142 thus prepared was pyrolyzed at 720°C 

and the products were brominated, the 140 obtained was 9 3% 

mono- and 7% nondeuterated. There was no scrambling of the 

label position detectable. 

If the incorporation of deuterium into the propene 

evolved from 1-deuterio-l-silacyclobutanes is due exclu­

sively to the mechanisms outlined in Schemes 20 and 22 then 

silylene 18 formed in the decomposition of 12-d^ should be 

deuterated in a fashion complimentary to that observed for 

the propene. This question was addressed by copyrolyzing 

12-d^ with 2,3-dimethyl-l,3-butadiene 119. Information 

about silylene 18 could thus be gained by consideration of 

the trapping adduct formed. 

Undeuterated 12 was first copyrolyzed with 119 to 

establish the identities and characterize the products 

formed in the pyrolysis. Compound 12 was copyrolyzed with 

a 4- to 6-fold molar excess of 2,3-dimethyl-l,3-butadiene 

119 in a nitrogen flow. A total of three runs were per­

formed over the temperature range 520°C to 57 0°c- The 

major products were identified by their spectral charac­

teristics as 3,4-dimethyl-l-silacyclohex-3-ene 143, 1,3,4-

trimethyl-l-silacyclopent-3-ene 144, and 3,4-dimethyl-l-
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silacyclopent-3-ene 145 (Scheme 23). The yields obtained 

for the various products are included in Table 6. The 

identities of products 144 and 145 were confirmed by 

independent synthesis. It was of interest to see whether 

any propylsilylene 20 could be trapped in this experiment. 

A careful search revealed only a trace of a compound whose 

GCMS matched that of an independently synthesized sample 

of l-n-propyl-3,4-dimethyl-l-silacyclopent-3-ene 146, which 

would be the trapping adduct of 20 and 119. Its formation 

in at most trace amounts is not particularily surprising 

since other work with alkylsilylenes (vide infra) has 

generally found that under these conditions alkyl silylenes 

decompose to alkenes and smaller silylenes more rapidly 

than they undergo trapping reactions with butadienes. 

Since the propene-forming path in the pyrolysis of 12 makes 

up only ca. 20% of the decomposition, it is reasonable to 

anticipate trapping of 20 in only trace amounts. 

Compound l^-dg was copyrolyzed with 119 under con­

ditions comparable to those already described for undeu-

terated 12. The major silicon-containing products were 

deuterated analogues of 143-145. The yields for a total of 

three runs are included Table 6. 

The deuterated products 143-145 from the copyrolysis 

of 12-d2 and 119 were extensively analyzed by MS, ^ NMR, 
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Scheme 23 

HgSi. 
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1,2-H 
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•> HgSi: + CgHg 

18 

Me 
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V 

SiHMe 

144 

yy\ 
146 (trace?) 145 

H NMR, and IR methods to determine deuterium incorporation 

and distribution. 

The mass specral ion intensities were measured at 12 

eV by GCMS. The data from these analyses and the percent 

deuterium calculations are presented in Table 7. These 
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Table 6. Product yields from copyrolysis of 12 and 12-d 
with 2,3-dimethylbutadiene 119^ 

Molar 
excess 

M.R., 

Yield, % (GLC)^ 

Run Cpd. ̂ 119 Tf°C M.R., 143 144 145 

1® 12 6.0 520 54 6 5 1 

2^ 12 4.2 540 59 12 6 2 

3® 12 6,0 570 61 2 4 0.5 

4f 12-d2 6-1 520 81 15 7 1 

5 iZ-dg 6.2 530 77 21 9 2 

6f 12-d2 4.7 540 73 12 8 2 

79 iZ-d; 6.0 570 46 1 2 0.3 

^Nitrogen flow pyrolysis. 

^Absolute yields determined by GLC against mesityl 
bromide internal standard. 

^12 or 12-d2-

^Mass recovery. 

®No starting material 12 was recovered. 

^3% unreacted 12-d^ was recovered. 

"^No unreacted l^-dg remained. 
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calculations are reasonably accurate for compound 143, how­

ever large M-1 peaks in the reference spectra for undeuter-

ated silacyclopentenes 144 and 145 (ca. 8%) introduce an 

element of uncertainty into the calculated values of deu­

terium incorporation for these compounds. 

The mass spectral results of Table 7 indicate that 

compound 143 is formed from l^-dg as 2 95% 143-d2- This is 

corroborated by NMR and IR data which both show only a 

trace of silyl hydride formation (_< 0.06H in the NMR). 

NMR indicated that deuterium was present only as silyl 

deuteride. These data are all consistent with the assign­

ment of structure 143a as the nearly exclusive silacyclohex-

3-ene product formed. 

Product 144 was formed in this copyrolysis with exten­

sive deuterium incorporation; the major species formed (48 

mol %) is apparently doubly deuterated. Formation of 144-

0-2 is consistent with formation of silylene U-dg by a 

143a 



www.manaraa.com

77 

Table 7. Percent deuterium incorporation in products 143, 
144, and 145 from copyrolysis of 12-d2 with 
excess 2,3-dimethyl-l,3-butadiene 119^ 

Ref. Mol % 
•U Ion ion Corr. deuterated 

Cpd. Ion intensity^ intensity intensity® species ® 

143 M-2 0.2 0.2 _ _  _ _  

(M = M-1 0.3 0.3 —  —  

126) M 1.4 100.0 1.4 1 (dO) 
M+1 5.0 12.4 5.0 5 (dl) 
M+2 100.0 4.1 99.8 94 (d2) 
M+3 13.5 0.4 0.9 
M+4 4.1 0.1 — —  

144 M-2 1 1 — — — — 

(M = M-1 9 8 
126) M 36 100 36 19 (dO) 

M+1 67 15 62 33 (dl) 
M+2 100 5 89 48 (d2) 
M+3 13 — — 

M+4 1 

145 M-2 5 1 —• — 

(M = M-1 4 8 
112) M 53 100 53 30 (dO) 

M+1 100 15 92 53 (dl) 
M+2 46 5 29 17 (d2) 
M+3 n 

/ 0 

^ata obtained from Run 4, Table 6. 

^beuterated 143, 144, or 145. 

^Tyieasured ion intensity on Finnegan 4023 GC-MS of 
deuterated samples. 

"^Measured ion intensity on Finnegan 4023 GC-MS of 
authentic undeuterated samples. 

^Calculated by the method of Biemann (83) using 
reference spectra for undeuterated samples. 
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1,2-D shift (Scheme 24). If trapped without subsequent 

scrambling or deuterium loss, then dideuterated silacyclo-

pentene 144a would be the exclusive product formed. 

However the data in Table 7 make it clear that extensive 

deuterium loss has in fact occurred, with d^ product (33%) 

and dg product (18%) also present. 

Scheme 2 4 

DgSi 

12-d, 

^Si=.CH2 

D' 
13-d, 

1,2-D 

• » 

Si 
^ N 

17-du 

143a 

)0*' 
144a 

^^CHg-D 

The deuterated 144 also showed IR and NMR spectra 

which indicated loss of deuterium and formation of silyl 

hydride. The IR spectrum showed a very strong silyl 

hydride band, and the NMR spectrum showed a silyl 
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hydride resonance which integrated as 0.25H. The silicon 

methyl, normally a clean doublet in undeuterated 144, was 

split into a complex multiplet, and integrated as 2.6H. 

2 
The H NMR results correlate with this data. Resonances 

corresponding to silyl deuteride (l.OOD, integration in 

arbitrary units) and to deuterium substitued on the silicon 

methyl (0.79D) were found, and none others. The inte-

1 2 
grated H and H NMR signal intensities for the deuterated 

144 are represented in Fig. 3. 

Me 

Me 

i 

Me (2.6H) 

144 

(0.25H) 

Me (0.79D) 

(l.OOD) 

(a) (b) 

Figure 3. (a) H and (b) H NMR integrals of deuterated 
144 formed in the copyrolysis of 12-d2 and 2,3-
dimethyl-1,3-butadiene 119 (the deuterium NMR 
intensities are in arbitrary units; the proton 
NMR integrals are relative to the 6H vinyl 
methyl resonance) 

The MS and NMR data combined indicate that struc­

ture 144a (Scheme 24) is the major deuterated species of 

144 formed in this copyrolysis. This is consistent with 

the 1,2-H (or D) shift interconverting silene 13 and 
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methylsilylene 17 which has been proposed by Conlin and 

Gill and others (12, 13). However the extensive deuterium 

loss raises the question of whether methylsilylene IV-d^ or 

product 144a undergoes secondary reactions in this pyro-

lysis, and whether an alternative mechanism for methyl­

silylene 17 formation must be sought (84). Resolution of 

these experimentally difficult questions was not undertaken 

in this dissertation research. 

More pertinent to this investigation was the nature of 

the deuterated 3,4-dimethyl-l-silacyclopent-3-ene 145 

obtained. The mass spectral data indicate that the 145 is 

predominantly d^ (53 mol %), with lesser amounts of d^ (30 

2 
mol %) and d.2 (17 mol %). H NMR results showed only a 

silyl deuteride resonance. The IR spectrum of the product 

showed both an SiD (s) and an SiH (vs) band, and the NMR 

showed a significant (1.2H) silyl hydride resonance. 

Therefore silacyclopentene 145 is formed as only three 

deuterated isomers 145a (dg), 145b (d^^) and 145c (dg). 

Me 

JC> 
145a 

iH, 

Me 

145b 

Me 

iD 

Me Me 
145c 

(30 mol %) (53 mol %) (17 mol %) 
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If deuterated silylene 18 and deuterated propane are 

formed in the same decomposition process of l^-dg, then the 

deuteration of silylene 18 (or its trapping adduct 145) 

should compliment the deuteration observed in the propene. 

One would expect similar relative amounts of d^ silylene 18 

to be formed as d^ propene. The results have indicated 

this to be the case, although the variation in the con­

ditions employed must be kept in mind (FVP at 710°C con­

ditions were used to characterize the propene, while the 

trapping experiments were done in a nitrogen flow system at 

ca. 540°C). Found were 59 mol % d^ propene and 53 mol % 

monodeuterated 145b. Similarily, dg propene should corres­

pond with d2 silylene 18, and d2 propene with dg silylene. 

Observed were 21 mol % dg propene vs. 17 mol % 145c (d2), 

and 18 mol % d2 propene vs. 30 mol % 145a (dg). 

It appears that the low yields of silylene 18 adduct 

145 formed in this experiment are at least partly due to 

the thermal instability of silacyclopentenes under these 

conditions. When an authentic, independently prepared 

sample of 1,l-dideuterio-l-silacyclopent-3-ene 145c was 

copyrolyzed with a 10.7-fold molar excess of 119, the sila-

cyclopentene was recovered in only 18% yield. There was 

little loss of the deuterium label. Unpyrolyzed 145c was 

determined to be 95% d2 by mass spectral determination, and 
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the pyrolyzed 145c was found to be 91% These results 

are summarized in Table 8. The pyrolyzed 145c was also 

2 examined by H NMR and no scrambling of the label position 

could be detected. 

In summary, the pyrolysis of 1-deuterated silacyclo-

butanes 12-d2 and 90-d^ has clearly shown that pre­

dominantly deuterated propene is formed in the decom­

positions. The observed deuteration of the propene 

(favoring incorporation onto the allylic position of the 

propene) occurring without detectable incorporation of 

deuterium onto the ring carbons of the starting silacyclo-

butane is most economically rationalized by suggesting that 

deuterio- (or hydrido-) silacyclobutanes decompose to pro­

pene predominantly via initial, irreversible propylsilylene 

formation, followed by rapid decomposition of the propyl­

silylene to propene. This interpretation is strengthened 

by the comparable deuteration observed (by analysis of the 

trapping adduct 145) in the silylene 18 formed in the 

pyrolysis of l^-dg. 

The 0-2 propene observed in the FVP of 12-d2 and the 

incorporation of deuterium onto and of the propene 

formed suggested a scrambling process in deuterated propyl­

silylene 20-d2 was occurring prior to propene formation. 

Since hydridosilacyclopropanes have been suggested as 
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Table 8. Deuterium incorporation in unpyrolyzed and 
pyrolyzed 145c 

Corrected Mol % 
Com-^ Ion Ion ^ ion deuterated 
pound (M = 112) intensity intensity^ species^ 

145c un­ M-2 1 
pyrolyzed M-1 0 — 

M 10 10 1 (dO) 
M+1 37 36 3 (dl) 
M+2 1015 1015 95 (d2) 
M+3 121 4 0 
M+4 39 — 

M+5 3 — 

145c, pyr­ M-2 10 — — — 

olyzed M-1 3 d — 

M 36,9 45® 4 (dO) 
M+1 56 51 4 (dl) 
M+2 1112 1103 91 (d2) 
M+3 144 15 1 (d3) 
M+4 44 
M+5 4 

Compound 145c before and after nitrogen flow 
copyrolysis with excess 2,3-dimethylbutadiene 119 (see 
text). 

^Observed ion intensity measured on a Kratos MS-50 Mass 
Spectrometer, 10.3 eV, neat samples (arbitrary units). 

Q 
Calculated by the method of Biemann (83) using the 

following reference spectrum for undeutsrated 145 determined 
at the same time and conditions: M-2 13, M-1 4, M 409, M+1 
47, M+2 15, M+3 1, M+4 0, M+5 0. 

^Two ions were found; the ion for 145-dn was not 
identified. 

6 
The total intensity for the ions at M = 112 was used 

(see note d), hence these calculated values represent 
the maximum amount of 145-d 
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likely intermediates in the known decomposition of alkyl 

silylenes to alkenes and silylenes (see Historical sec­

tion), it was hypothesized that such intermediates (e.g., 

147-d2, Scheme 25) might be involved in the observed scram­

bling. Since relief of ring strain provides enough lower­

ing of the activation energy for alkyl elimination to 

become significant for hydridosilacyclobutanes, a similar 

silacyclopropane to alkylsilylene reaction should be even 

more favored. Thus, a reversible alkylsilylene-silacyclo-

propane isomerization could explain the observed deuterium 

scrambling and formation of d2 propene. These consider­

ations are summed up in Scheme 25, in which, for clarity, 

only a few of the possible intermediates are shown. 

Scheme 25 

12-d 20-d, 
2 2 

• 

etc. 

147-d. H—Si* D 
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Subsequently, as will be described in the next section, 

alkylsilylenes were independently generated in pyrolysis 

experiments to probe in a less ambiguous fashion the ques­

tions of scrambling, silacyclopropane formation, and the 

possibility of a reversible silacyclopropane-alkylsilylene 

isomerization suggested by this work with silacyclobutanes. 

Thermal Reactions Of Alkylsilylenes 

In the preceding section it was shown that propyl-

silylenes are formed in the initial step of the pathway of 

thermal decomposition of hydridosilacyclobutanes to propene. 

The pyrolysis of 1,1-dideuterio-l-silacyclobutane 12-d2 

afforded largely monodeuterated propene, however some 

doubly labelled propene was also observed. The d2 propene 

was postulated to arise as a consequence of a reversible 

silylene-silacyclopropane equilibrium (Scheme 25). 

Furthermore the lack of any scrambling of deuterium 

onto the carbons of the silacyclobutane ring when 12-d2 was 

recovered after pyrolysis suggests that the initial for­

mation of 20 is not reversible. This conclusion conflicts 

however with research by other workers (37, 50) who have 

suggested the possibility of ethene formation from propyl-

silylene (an observation which is subject to controversy 
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[49], see Historical section) which could occur through 

Y-C-H insertion and silacyclobutane formation (path a. 

Scheme 26). The analogous process is well known for 1,3-

disilacyclobutane formation, as originally noted in the 

rearrangement of tetramethyldisilene 54 (43) , and y-C-H 

insertion into an allylic C-H bond with 3-methylene-l-sila-

cyclobutane ring formation has been discovered in the reac­

tion of silylene 63 (Historical section) (45). It has also 

been suggested that propylsilylene could afford ethene via 

a concerted process (path b. Scheme 26) (52). 

Scheme 26 

X—Si 

path a 

H—Si-

L 

path b 

X—:Si-H, 

x/ 
'2 ^2^4 
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In order to clarify some of these questions the direct 

generation of alkylsilylenes was undertaken. First to be 

studied was methylpropylsilylene 88a, generated from 1-

methoxy-l-n-propyl-l,2,2,2-tetramethyldisilane 150. Syn­

thesized in 30% yield from 1,1-dichloro-l,2,2,2-tetra-

methyldisilane 151 (85), 150 was subjected to FVP at 650°C. 

The collected pyrolysate was degassed and the gases collec­

ted at -196°C; the remaining liquid pyrolysate and the 

gases were analyzed separately. The liquid fraction (24% 

mass recovery) was found to contain a single major com­

ponent, the expected methoxytrimethylsilane 45, as well as 

numerous trace compounds. A thorough search by GC-MS 

failed to disclose any 1-methyl-l-silacyclobutane 90. 

Admittedly, a small amount of 90 could have gone 

undetected, since silacyclobutanes would be expected to 

decompose extensively at these temperatures (12 was 

recovered in only 8% yield at 710°C). More conclusive is 

the fact that when the gaseous fractiolî" was analyzed by GC-

MS, the major product was propene, with ethene, the prin­

cipal silacyclobutane decomposition product, present in 

only trace amounts (< 1% of propene, uncorrected). We 

therefore failed to observe any evidence of either path a 

or path b (Scheme 26) occurring. 

Copyrolysis of 150 with a 5.4-fold molar excess of 
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2,3-dimethyl-l,3-butadiene at 540°C resulted in the first 

trapping of an alkylsilylene, although the rapidity of the 

decomposition of 88a to propene and methylsilylene 17 is 

illustrated by the low yield of adduct 152, 2%. The fol­

lowing products were characterized: methoxytrimethylsilane 

45 (49%), 1,3,4-trimethyl-l-silacyclopent-3-ene 144 (46%), 

1-n-propyl-l,3,4-trimethyl-l-silacyclopent-3-ene 152 (2%), 

and unreacted 150 (4%) (Scheme 27). The identification of 

compound 152 was confirmed by independent synthesis. 

Scheme 27 
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The FVP of l-n-propyl-2 , 2, 2-triinethyldisilane 153 also 

afforded propene, but no ethene. Compound 153 was prepared 

in 6% overall yield from 1,1,l-trichoro-2,2,2-trimethyl-

disilane 154 (86) by reaction of 154 with propyl Grignard 

reagent and reduction of the intermediate 1-n-propyl-l,1-

dichloro-2,2,2-trimethyldisilane 155 with LiAlH^; despite 

numerous efforts better overall yields proved unobtainable. 

The FVP of 153 at 710°C afforded an effervescent 

pyrolysate containing propene as the major identifiable 

species. Analysis by gas chromatography indicated that 

ethene was present in only trace (< 3% of propene) quan­

tities. Repetition of the pyrolysis and trapping of the 

alkenes formed in bromine afforded a 71% yield of 1,2-

dibromopropane 140. 

Br\ ^Br 
n-PrSiHjSiMe, k H-Si , ^ c,H, ^ \ / 

FVP, v_y ^36 

153 710°C 20 2 Me 

1,l-Dideuterio-l-n-propyl-2,2,2-trimethyldisilane 153-

d.2 was prepared in the same fashion as 153 except with 

reduction of 155 with LiAlD^. To see whether deuterated 

propylsilylene 20 would scramble deuterium, 153-d2 was pyr-
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olyzed under FVP conditions at 710°C. Analysis of the 

gaseous products by GC and GC-MS showed the major charac-

terizable product to be deuterated propene, estimated to be 

ca. 24% dg, 65% d^, and 11% d2- A cautionary note, 

however, is in order regarding the accuracy of this 

estimate; the facile loss of hydrogen in the mass spectrum 

of propene renders the calculation of deuterium incor­

poration innaccurate, as discussed above regarding 

the FVP of 12-d2. Only a trace of ethene (< 1% of propene) 

was detected, which was apparently highly deuterated {> 50% 

d^). At 700°C the sample was completely decomposed. 

Pyrolysis of 153-d2 under FVP conditions at 710°C and 

bromination of the alkenes formed gave deuterated 1,2-

dibromopropane 140 in 83% yield. Two independent experi­

ments both determined the 140 formed to be a mixture of dg 

(38-40%) and d^ (60-62%) with no dg present (Table 9). 

Furthermore the deuterium was almost completely scrambled 

2 
in the 140 as determined by H NMR (Fig. 4). Integration 

of the signals gave relative intensities of 29% at C^, 22% 

at C2, and 49% at Cg; complete randomization would afford 

intensities of 34% at , 17% at C2, and 50% at C^-

When the pyrolysis of 153-d2 was repeated at a lower 

temperature (500°C) a 70% yield of deuterated trimethyl-

silane 156-d-]^ and a 19% yield of recovered 153-d2 was 
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obtained. NMR of both products indicated that there was 

no positional scrambling of deuterium (notably incor­

poration of deuterium onto the propyl chain in 153) for 

NMR indicated a small amount of deuterium loss and silyl 

hydride formation for both compounds {< O.lH, or ca. 5% and 

10% silyl hydride formation in the recovered, deuterated 

153 and 156, respectively). 

The minimal deuterium exchange and lack of scrambling 

seen in the recovered starting material 153-0^, and the 

nearly quantitative deuteration (as silyl deuteride) of the 

trimethylsilane indicates that propylsilylene is formed as 

monodeuterated 20-d^ and that the scrambling and labelling 

results obtained could be due to a reaction of the propyl­

silylene intermediate formed. This experiment rules out 

prior scrambling in the starting material or transfer of 

deuterium from trimethylsilane 156 to the propene. 

either compound; only silyl deuterides were detected. 

Me^SiD + 153-d^ + 

156-d^ 

(70%) (19%) 

> 90% d, > 95% d 

20-d. 
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Table 9. Percent deuterium incorporation in 1,2-
dibromopropane 140 from FVP of 1-n-propyl-l,1-
dideuterio-2,2,2-trimethyldisilanë 153-d2 

Corr. Mol % 
Yield Ion Ion ion deuterated 

Run of 140 (M = 200) intensity ̂  intensity" species 

83 M-2 0 
M-l 1 
M 61 61 38 (dO) 
M+1 100 98 62 (dl) 
M+2 124 1 0 (d2) 
M+3 194 
M+4 71 
M+5 95 — — 

M+6 11 
M+7 1 

_d e 
50 2 M-l 50 

M 988 988 40 (do) 
M+1 1541 1477 60 (dl) 
M+2 1983 0 0 (d2) 
M+3 2982 
M+4 1250 
M+5 1466 
M+6 185 

^Measured ion intensity, deuterated sample, arbitrary 
units. 

Calculated by the method of Biemann (83) using the 
following reference spectra for undeuterated 140: Run 1, 
M-2 1, M-l 6, M 725, M+1 28, M+2 1,413, M+3 50, M+4 685, M+5 
23, M+6 1; run 2, M-l 823, M 47,783, M+1 3,106, M+2 97,049, 
M+3 3,439, M+4 48,498, M+5 987, M+6 66. 

'^Sample and reference spectra determined on a Kratos 
MS-50 Mass Spectrometer, neat samples. 

"^Sample and reference spectra determined on a Finnegan 
4023 GCMS. 

®Not determined. 
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benzene, ô 7.15 

(Br) 

(A), (B) 

6 4.00 

6 2.00 

Figure 4. ^ NMR of 1,2-dibromopropane 140 from bro-
mination of flash-vacuum pyrolysate of 153-d2 
(benzene solution, 46 MHz; insert shows the 
assignment of resonances; the peak at 6 7.15 is 
natural abundance deuterated benzene) 
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The significant deuterium incorporation in the propene 

formed in the pyrolysis of ISS-dg and nearly random scram­

bling observed are consistent with the proposed alkyl-

silylene-silacyclopropane isomerization (Scheme 28). Also 

interesting is the lack of significant propene. It 

would be expected that if deuterium incorporation were the 

result of a bimolecular radical or silylene process, then 

such a process would result not only in the formation of d^ 

propene, but also d^ propene in significant amounts. As d^ 

propene was formed, it would compete with dg propene in any 

such reaction resulting in dg product. The results of 

Table 9 clearly indicate that such a statistical random­

ization of the label is not occurring; therefore a uni-

molecular scrambling process is implied. This question of 

possible bimolecular reactions will be discussed in more 

detail later in this section. 

Another consequence of the proposed aIkyIsilylene-

silacyclopropane isomerization is the prediction that alkyl-

silylenes should form alkenes with formally "migrated" 

double bonds. This has not previously been reported in the 

literature. For example, Gusel'nikov et al. (49) and 

Barton and Burns (47) both reported only the formation of 

1-alkenes from alkylsilylene decompositions. Therefore the 

pyrolysis of 1-n-butyl-l-methoxy-l,2,2,2-tetramethyl-
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Scheme 28 

153-d. > D-Si' 

20-d^ 

disilane 157 (47) was reexamined. 

The FVP of 157 (47) was performed at 708°C and the 

gaseous products collected and analyzed by GC and GCMS. 

Three different butenes were found with retention times and 

mass spectra corresponding to 1-butene (49 parts), E-2-

butene (31 parts), and ̂ -2-butene (20 parts), as well as 

the expected methoxytrimethylsilane 45 (17 parts, uncor­

rected), and a compound tentatively identified only by MS 

as methylsilane (24 parts, uncorrected). Propene and 
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ethene were found in only trace (< 1 part each) amounts. 

The relative yields of butenes have been corrected using 

literature TC response factors (87). Repetition of the 

experiment at 560°C showed 1-butene (36 parts), E-2-butene 

(41 parts), Z-2-butene (23 parts), the compound identified 

as methylsilane (24 parts), and methoxytrimethylsilane (84 

parts) were the sole products obtained. 

Additional confirmation of the product butene iden­

tities was provided by bromination of the alkenes. FVP of 

157 at 703°C and bromination of the pyrolysate yielded 1,2-

dibromobutane (21%) and 2,3-dibromobutane (two isomers, 

presumably meso and ̂  forms, in 26% and 19% yields). It 

was not determined which isomer was ̂  and which was meso. 

These results may be rationalized as the result of 

initial methylbutylsilylene 89 formation and equilibration 

of isomeric silylenes 89 and 158 with silacyclopropanes 159 

and 160 (Scheme 29). 

Extending the alkyl chain by two carbons resulted not 

only in the formation of 1- and 2-hexenes, but also of 3-

hexenes. FVP of 1-hexyl-l-methoxy-l,2,2,2-tetramethyl-

disilane 161 at 605°C yielded a very clean pyrolysate 

containing only four product peaks by capillary GLC; no 

unreacted 161 remained. The products were identified by 

isolation by preparative GLC and their spectral charac-
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Scheme 29 
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teristics as methoxytrimethylsilane 45 (83%), 1-hexene 

(45%), Z-2-hexene (18%), and a mixture of E-2-hexene and 3-

hexenes (33%). This mixture was characterized by MS, 

NMR and NMR. The NMR (Fig. 5) in benzene-d 
6 

solution contained a total of eight peaks in the methyl 

region, including a triplet at 6 0.85 (J = 7.3 Hz) which is 

the Cg methyl of E-2-hexene. Irradiation of the spectrum 

at <S 1.98 (insert, Fig. 5) collapses the eight peaks to 
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five; the triplet remains (labelled "a". Fig. 5, insert) 

and the remaining peaks simplify to two peaks at g 0.90 and 

0.93 ("b" and "c". Fig. 5, insert). The resonance at 5 

0.93 matches the chemical shift of an available sample of 

E-3-hexene. The remaining peak in the decoupled spectrum 

was presumed to belong to Z-3-hexene. Additional confir-

1 -3 
mation of the structural assignments was provided by a C 

NMR spectrum of the mixture, which showed resonances 

assignable to each isomer (E-2-, E-3- and Z-3-hexenes), 

matched against literature values (for Z-3-hexene) or 

values of available samples (E-2-hexene and E-3-hexene). 

Integration of the NMR spectrum indicated that the E-2-

hexene/3-hexene (both isomers) ratio was 2.6/1.0, and the 

E-3-hexene/Z-3-hexene ratio was 2.1/1.0. 

It is noteworthy that in our hands hexenes (along with 

the other expected decomposition product, methoxytrimethyl-

silane) are the exclusive products of thermal decomposition 

of 161. No evidence of any silacyclobutanes, silacyclopen-

tanes, of silacyclohexanes, indicating competitive intra­

molecular Y-, <5-, or e-C-H insertion was found. 

If deuteration of the alkenes formed from alkyl-

silylenes and formal migration of the double bond produced 

are both the result of a silylene-silacyclopropane isomer-

ization, then pyrolysis of a labelled alkylsilylene with an 
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o 

Figure 5- Alkyl region of the H NMR spectrum of the 
mixure of E-2-hexene and 3-hexenes obtained upon 
flash-vacuum pyrolysis of 161 (benzene-dg 
solution, 300 MHz; peaks are labelled as 
assigned to (a) E-2-hexene, (b) E-3-hexene, and 
(c) Z-3-hexene; insert shows expansion of the 
methyl region, decoupled by irradiation of the 
spectrum at 6 1.98) 
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extended carbon chain should show increasing deuteration 

with double bond migration. To test this hypothesis, 

1,1,1-trideuterio-n-hexylsilane ISZ-d^ was synthesized and 

pyrolyzed. 

However, the pyrolysis of undeuterated 162 (88) (syn­

thesized by reduction of n-hexyl-1,1,1-trichlorosilane [89] 

with LiAlH^) was conducted first to establish the product 

identities. An effervescent pyrolysate was obtained. 

After liberation of the gases upon warming at 1 atm pres­

sure, the remaining liquid was found to contain three 

hexene peaks and recovered 162. The identity of the hexene 

peaks was established by GLC retention times compared with 

authentic samples, GC-MS, and NMR spectra of samples 

isolated by preparative GLC. Found were 1-hexene (17%), Z-

2-hexene (4%), and a mixture of E-2-hexene and 3-hexenes 

(11%) in a ratio estimated by NMR analysis (similar to 

that presented previously in detail for the pyrolysis of 

161) to be 1.2/1.0 Z-2-hexene/3-hexene. Unreacted 162 was 

recovered in 4% yield from FVP at 735°C (Scheme 30). 

The yields of hexenes from 162 were considerably lower 

than those found for the FVP of 161; this was determined to 

probably be the result of secondary decomposition of the 

alkenes. When the pyrolysis was repeated and the gaseous 

products were collected and analyzed by GLC and GCMS a 
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number of lighter alkenes were determined to be present. 

Found were the following compounds, with relative yields in 

parentheses; ethene (1.03), propene (0.82), 1-butene 

(0.20), 1-pentene (0.30), butadiene (< 0.10), 1-hexene 

(1.00), Z-2-hexene (0.21), and the E-2- and 3-hexene 

mixture (0.45). These identifications are based on MS 

spectra and GC retention times on two different columns. 

The relative amounts have been corrected using available or 

estimated TC response factors (87). 1-Pentene was also 

identified by NMR as a product in the copyrolysis of 162 

with 1,3-butadiene (vide infra). 

In this pyrolysis, although some 1-butene was detec­

ted, GLC and GCMS analysis failed to detect significant 

amounts of 2-butene (GLC analysis could not absolutely rule 

out the presence of 2-butene, due to low sample concen­

tration, however the presence of 2-butene could be deter­

mined to be less than 8% of the amount of 1-butene). The 

fact that, although a mixture of isomeric hexenes are 

obtained in the pyrolysis, 2-butenes are not formed in a 

similar amount consititutes evidence against the possibility 

that the alkene isomerization observed in this pyrolysis is 

the result of bimolecular processes, e.g., radical or 

silylene chain processes. If, for example, 162 decomposed 

initially solely to 1-hexene which was isomerized by 
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bimolecular processes, such a process would also occur to a 

comparable degree with 1-butene. 

To determine whether the lighter alkenes and low 

hexene yields are the result of secondary decomposition, a 

mixed hexene solution similar in composition to the product 

hexene mixture was prepared, consisting of 44% 1-hexene, 

17% Z-2-hexene, 28% E-2-hexene, and 12% 3-hexene {Z and E 

isomers) and pyrolyzed at 735°C under FVP conditions. The 

pyrolysis products were collected as a gaseous sample; the 

products, identified by GLC and GC-MS, with corrected rela­

tive amounts in parentheses, were: ethene (0.40), propene 

(0.38), 1-butene (0.20), butadiene (0.30), 1-hexene (1.00), 

and the remaining hexenes. The peak areas of the hexenes 

by capillary GLC were little changed by pyrolysis. After 

pyrolysis, the relative hexene peak areas were found to be 

1-hexene (42%), ̂ -2-hexene (16%), and the mixture of E-2-

and 3-hexenes (42%), as compared with 44%, 17%, and 40% 

respectively in the unpyrolyzed starting sample. Only 

trace amounts of Z- and E-2-butene, four pentene isomers, 

and two pentadiene isomers were also found by GC-MS. The 

amounts of these trace products were, however, too small to 

be detected by routine GLC using TC detection. The 

relative yields of light alkenes to 1-hexene proved 

variable, possibly the result of the relative involatility 
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of hexene, which may have resulted in incomplete collection 

of sample; repetition of the experiment afforded relative 

yields of ethene (0.85), propene (0.45), 1-butene (0.20), 

butadiene (0.45), and 1-hexene (1.00), which are closer to 

the amounts observed in the pyrolysis of 162. 

When pure 1-hexene, or a 69.5/30.5 mixture of Z-2-

hexene/E-2-hexene were pyrolyzed, no isomerization of the 

starting materials was detected, although effervescent 

pyrolysates, indicating decomposition to lighter gases, were 

observed. FVP of 1-hexene at 735°C afforded a 64% mass 

recovery with a 52% yield of unchanged 1-hexene, and FVP of 

a 69.5/30.5 ratio of Z-2-hexene/E-2-hexene gave yields of 

21% E-2-hexene and 13% Z-2-hexene. 

In order to test for products arising from Si-C or C-C 

bond cleavage in alkylsilanes under these conditions, 

1,1,1-trimethyl-l-n-hexylsilane 163 (90) was subjected to 

FVP at 740°C, resulting in a 72% mass recovery of a pyro-

lysate consisting exclusively of unchanged 163 by GLC and 

NMR analysis. Thus, none of the products found in the 

pyrolysis of 162 can be accounted for by fragmentation in 

the starting material alkyl chain. 

These results for the pyrolysis of 162 and the as­

sociated control experiments are summarized in Scheme 30. 

Elimination of dihydrogen from 162 forms hexylsilylene 164 
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which then decomposes to 1-, 2- and 3-hexenes- At the 

temperatures employed (735°C) these hexenes are subject to 

secondary decomposition to lighter alkenes. The pyrolysis 

of 163 indicated that no C-C or Si-C bond hemolysis was 

occurring. Pent-l-ene was tentatively identified in the 

pyrolysate of 162 on the basis of MS and and GLC retention 

times; the formation of this product does not appear to be 

the result of secondary hexene decomposition. The 

mechanism of pentene formation is unknown; it would not be 

expected to be the result of y-C-H insertion and silacyclo-

butane formation, since, if this occurs, pentene formation 

(path a, Scheme 30) would not be expected to be competitive 

with ethene (and 2-n-propyl-l-silene) formation via 

cleavage of the more subsituted C-C bond in the silacyclo-

butane intermediate (path b, Scheme 30). A concerted 

decomposition (as in path b. Scheme 26) could explain the 

formation of pentene, but this suggestion must be rejected 

on the grounds that at very similar temperatures the pyro­

lysis of 150 and 153 afforded no ethene. 

Having investigated the pyrolysis of undeuterated 162 

in considerable detail, the pyrolysis of deuterated 162-d2 

was undertaken. For two runs at 740°C, product yields 

were: 1-hexene (13-18%), Z-2-hexene (3-4%), and a mixture 

of E-2-hexene and 3-hexenes (ca. 1.7/1.0 E-2-/3-hexene, 
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9-12%). Unreacted, deuterated 162 was recovered in 4-7% 

yield. 

The products and unreacted, deuterated 162 were 

separated by preparative GLC and spectral data were obtained. 

The unreacted 162 recovered showed ca. 13% deuterium loss 

and silyl hydride formation (0.39H) by NMR integration. 

Because of facile H or D loss from 162 in the mass spec­

trum, mass spectral results for deuterium incorporation 

could only be obtained by measuring ion intensities of 

resolved parent ions for dg and d 2 162 at high resolution 

(Rs = 75,000). The relative intensities for dg species and 

d^ species were found to be 15.5 + 1.0 and 8.5 + 1.0, 

respectively. Reliable quantitation for d^ and dg could 

not be obtained because only very small ions which were 

2 
shoulders on larger peaks could be observed. H NMR 

revealed no scrambling of deuterium onto the carbons of the 

alkyl chain; all deuterium was present as silyl deuteride. 

2 H NMR and mass spectra of the product hexene peaks 

were obtained. Table 10 records the MS results, and Table 

2 11 reports the integrated H NMR signal intensities for 1-

2 
hexene and ^-2-hexene. H NMR data of the mixture of E-2-

hexene and 3-hexene are given in the Experimental. 

It is clear from Table 10 that increasing deuteration 

with formal double bond migration is in fact observed, as 
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predicted. Thus 1-hexene from 162-dg is 28% monodeuterated 

and 66% nondeuterated, whereas the Z-2-hexene is 58% mono­

deuterated and 39% undeuterated. The mixture of E-2- and 

3-hexenes shows approximately the same amount of deuter-

ation (35% d^ and 61% d^) as the Z-2-hexene. In all 

compounds, d2 hexene formation is nearly insignificant. 

2 
The H NMR of the 1-hexene and Z-2-hexene revealed 

complex and extensive scrambling of deuterium in 

both products (Table 11). At most positions, the incor­

poration of deuterium is nearly statistical, however an 

enhanced signal at Cg of 1-hexene, some 300% larger than 

would be anticipated from merely random scrambling, is quite 

apparent. The effect is still apparent in the Z-2-hexene, 

where the Cg and Cg positions (which are unfortunately 

unresolvable in the spectrum) still show a ca. 50% signal 

enhancement over what would be expected from random incor­

poration. This could be the result of the proposed 

silylene-silacyclopropane isomerization, if a kinetic 

effect favors incorporation at C2- Such a mechanism is 

diagrammed in Scheme 31, where the C-D (or C-H) elimination 

of the silacyclopropane intermediates occurs with the 

silylene moiety favoring the less hindered site, i.e., k_3 
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Table 10. Percent dueterium incorporation in hexenes from 
FVP of 162-d3 

Compound 
Ion 
(M=84) 

Actual 
ion 

Corrected 
ion I 

intensity intensity 

Mol % 
deuterated 
species 

1-hexene M-2 
M-1 
M 
M+1 
M+2 
M+3 

844 
423 
87 
14 

844 
363 
59 
10 

66 
28 
5 
1 

(dO) 
(dl) 
(d2) 
(d3) 

^-2-hex-
ene 

M-2 
M-1 
M 
M+1 
M+2 
M+3 

899 
1396 
166 
17 

899 
1332 
70 
10 

39 
58 
3 
G 

(dO) 
(dl) 
(d2) 
(d3) 

isomeric 
mixture 

M-2 
M-1 
M 
M+1 
M+2 
M+3 

1565 
2856 
358 
49 

1565 
2745 
161 
33 

35 
61 
4 
1 

(dO) 
(dl) 
(d2) 
(d3) 

Measured ion intensities of deuterated hexene 
determined on a Kratos MS-50 Mass Spectrometer, 20 eV, neat 
samples. 

^Calculated by the method of Biemann (83) using the 
following reference spectrum (of undeuterated Z-2-hexene) 
for all samples, 20 eV: M-2 0, M-1 0, M 4896, M+1 346, M+2 
9, M+3 0. 

c 
Mixture of E-2-hexene and 3-hexenes as described in 

text. 
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Table 11. Deuterium distribution in 1-hexene and Z-2-hexene 
from pyrolysis of 162-dg determined by 2H NMR 

% deuter-
Signal Assign- Signal erium at 

Compound (ppm, 5) ment^ intensity^ Theory® 

1-hexene 4.9-5.2 1 125.3 16 17 
5.5-6.0 2 200.0 26 8 
1.8-2.1 3 171.0 22 17 
1.1-1.5 4, 5^ 228.6 30 34 
0.7-0.9 6 42.9 6 25 

Z—2—hex— 1.4-1.7 1 722 27 25 
ene 5.3-5.7 2, 3^ 719 27 17 

1.8-2.1 4 331 13 17 
1.2-1.4 5 521 20 17 
0.7-0.9 6 350 13 25 

^Chemical shift of signal, benzene solution, Bruker 
WM-300 NMR Spectrometer (46 MHz), deuterated benzene 
(natural abundance) internal standard. 

^Signals assigned to deuterium substituted on carbons 
numbered according lUPAC nomenclature: 

^ r^2~S "^4 ~S 6 '^1~S"^3"^4 5~'^6 
1-hexene Z-2-hexene 

"^Integrated signal intensity. 

^Percent signal intensity at as percent of total 
spectrum intensity; for example, at Ci of 1-hexene the 
signal intensity is 125.3, or 15.3% of the total integrated 
spectrum intensity (767.8). 

^Calculated intensity for each signal assuming 
completely random scrambling of incorporated deuterium in 
the compound. 

^Signals overlap. 
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A number of control experiments were performed to test 

whether the rearrangement and scrambling phenomena observed 

in the pyrolysis of alkylsilylenes were in fact the result 

of a unimolecular silylene process, or the result of com­

plicating bimolecular radical or silylene chains. Although 

Davidson and Ring (34) found that under low pressure pyro-
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lysis conditions (0.01-0.1 torr) radical contribution to 

the methylsilane 32 pyrolysis was insignificant, at higher 

pressures (40-400 torr) the decompositions of methylsilane 

32 and dimethylsilane 34 were believed by Neudorfl and 

Strausz (35) to have a radical component, which could be 

suppressed by the addition of ca. 10% ethene. Rickborn et 

al. (36) also found the decomposition of 34 at shock tem­

peratures (> 1150 K) to be up to 85% the result of 

unquenched radical and silylene chains. 

Therefore the pyrolysis of 162 was undertaken under a 

variety of conditions to test the effect of added radical 

and silylene scavenging reagents. For this work, gas flow 

pyrolysis conditions (1 atm pressure, 575-590°C with gas 

flow 35 mL/min) were employed. This procedure allowed 

copyrolysis of 162 with other reagents to be conveniently 

performed via either coaddition or changing of the carrier 

gas. The relative yield of 1-hexene to rearranged, 

isomeric 2- and 3-hexenes can be taken as a measure of the 

effect of the additive or carrier gas. Bimolecular 

silylene or radical processes should be detectable by the 

suppression of 2- and 3- hexene formation in copyrolyses 

with scavengers. 

The results of these experiments are presented in 

Table 12. Pyrolysis under inert gas flow conditions 
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(nitrogen carrier gas) resulted in a relative increase in 

yields of 2- and 3-hexenes as compared with FVP conditions. 

A 20-35% combined yield of 2- and 3-hexenes was observed, 

compared with only a 6-7% yield of 1-hexene. This con­

trasts with the FVP results (vide supra) which produced 

more 1-hexene (17%) than 2- and 3-hexenes (15% combined). 

Changing the carrier gas to ethene resulted in a con­

siderable change in relative yields; under these con­

ditions 2- and 3-hexene formation (13-25%) still pre­

dominated over 1-hexene formation (5-11%), but it is clear 

that the relative yield of the 2- and 3-isomers is dimin­

ished compared with nitrogen gas flow conditions. Ethene 

gas flow pyrolysis also resulted in the production of a new 

product, identified by MS and NMR as diethylsilane 165, 

formed in minor amounts (in undetermined yield, but esti­

mated by uncorrected FID response to be < 5%). There were 

no other major products. The formation of 155 may be 

rationalized as the result of either a radical or a 

silylene process. A radical mechanism (Scheme 32a), which 

deserves consideration since ethene is known as an excel­

lent scavenger of silyl radicals (91), could occur via initial 

formation of radical 166 by Si-C bond hemolysis, which adds 

to ethene to form radical 167, which rearranges to ethyl-

silyl radical 168 by hydrogen abstraction followed by 
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Table 12. Pyrolyses of hexylsilane 162 under nitrogen, 
ethene, and butadiene flow conditions 

Carrier 
Diluent 
or Temp., 

Yields, Mass 
recov­

Run gasb additive^ °C A B C D ery, % 

1 N2 I (9.2) 580 6 6 14 28 65 

2 ^2 I (9.9) 585 7 9 

0
 

C
M
 

19 67 

3 «2 I (6.9) 590 7 12 23 4 56 

4 
^2 II (8.9) 585 5 7 18 

e 
56 

5 C2H4 I (8.7) 575 7 4 9 27 67 

6 C2H4 I (8.0) 580 8 4 10 34 64 

7 (=2^4 II (11.6) 580 11 7 18 
e 

77 

8 (=4^ — 585 9 3 5 29 

9 (=4^ III 585 

00 1—1 

3^ 6^ 29 

^Yields are absolute as percent of 162 used, except 
Run 9, note (f). A = 1-hexene, B = Z-2-hexene, C = mixture 
of S-2-hexene and 3-hexenes (see text), D = unreacted 162. 

^Nitrogen (N2), ethene (C^H^) or 1,3-butadiene (C.Hg) 
carrier gas. 

^Sample dissoved in diluent for nitrogen or ethene 
flow pyrolyses, I = cyclohexane, II = toluene (molar excess 
of diluent in parentheses). Butadiene pyrolyses used no 
diluent. Run 9, III = 26 mol % 1-hexene added. 

^Found by NMR to be a 1.1/1.0 ratio of E-2-
hexene/3-hexenes. 

®Indeterminable because toluene and 162 coeluted on 
capillary GLC column used for yield determinations. 

"Yields reported as percent of 162 plus added 1-hexene. 
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Scheme 32a 
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hydrogen loss in the resulting ethylsilane 169. Contin­

uation of this process by addition of a second molecule of 

ethene to radical 168 leads to the observed 165. 

Although they reported that radical chains were 

involved in the pyrolysis of methylsilane (35), Neudorfl and 

Strausz found that silyl radical formation occurred via 

Si-H and not Si-C bond hemolysis. In their experiments, 

pyrolysis of 32 with added ethene resulted in methylethyl-
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silane formation. No ethylsilane was reported. Based on 

these literature results, copyrolysis of 162 with ethene 

should afford hexylethylsilane, which was not found. An 

alternative silylene mechanism to explain the formation of 

165 is presented in Scheme 32b. Silylene 18, formed from 

the decomposition of 162, may add to ethene; the initially 

formed silacyclopropane 105 isomerizes to ethylsilylene 

170. Addition of a second molecule of ethene to silylene 

170 is followed by rearrangement of the silacyclopropane 

171 formed to diethylsilylene 172. The product 165 is 

finally formed either by insertion by 172 into an Si-H bond 

of unreacted 162 followed by elimination of hexylsilylene 

164, or by insertion of silylene 172 into dihydrogen. 

Insertion of silylene 172 into an Si-H bond is perhaps to 

be favored over insertion into the dihydrogen bond, since 

the latter reaction is experimentally unproven to date, 

although it has been calculated that the insertion of 

silylene 18 into dihydrogen has an energy of activation of 

only ca. 6 kcal/mol (25). 

Although published after these results were obtained, a 

scheme similar to Scheme 32b has been proposed by Erwin et 

al. to explain the formation of di-n-propyl- and iso-propyl-

n-propylsilane as products in silane-propene copyrolysis 
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experiments (54). Furthermore, based upon the lack of any 

characteristic radical fragmentation or coupling products, 

the authors have concluded that radical processes are not 

important in the silane pyrolysis in the presence of 

olefins. Their results are in essential agreement with 

these dissertation results. 
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Also apparent from Table 12 is the lack of any sig­

nificant effect of toluene addition (a radical chain 

inhibitor [36, 92], used as a diluent in place of cyclo-

hexane) on either the nitrogen or the ethene flow pyrolysis 

yields. 

The copyrolysis of n-butyldimethylsilane 174 (93) with 

1-hexene provided a model system to test for radical 

processes. If radicals are formed in the pyrolysis of 162 

by Si-H, S-C, or C-C bond hemolysis, they should also 

occur, without silylene formation, in the pyrolysis of 174. 

When 174 (1.54 mmol) was copyrolyzed with 1-hexene (1.74 

mmol) under nitrogen flow conditions at 575°C no isomer-

ization of the 1-hexene was detected. Compound 174 was 

recovered unchanged in 57% yield, and 1-hexene was 

recovered in 42% yield. 

The effect of possible bimolecular silylene chains was 

investigated by pyrolyzing 162 in a stream of butadiene 

carrier gas, an excellent silylene trap, at 585°C {Table 

12, Run 8). A dramatic change in relative yields was found 

compared with the nitrogen flow and ethene flow yields; the 

relative yields of 1-hexene (9%) and 2- and 3-hexenes (8% 

combined) approach the FVP value for 162 (17% and 15% 

respectively, vide supra). Therefore it appears that under 

gas flow conditions in the absence of silylene trapping 
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agents bimolecular silylene-alkene reactions do in fact 

occur, resulting in olefin isomerization. Since silylenes 

are known to react with alkenes to form silacyclopropanes 

(see Historical section), this process may be written as 

occurring through reversible silylene-alkene reaction 

coupled with the alkylsilylene-silacyclopropane isomer­

ization (Scheme 33). 

Scheme 3 3 

H. 2 

HgSi: + 

18 

Si 

H 

etc 

5 SiH^ 18 
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Also found in the copyrolysis of 162 and butadiene was 

a product identified by MS and NMR as 1-pentene. The 

mass spectrum and capillary GLC retention time matched that 

of a product also tentatively identified in the FVP of 162 

as 1-pentene (vide supra). 

As a control experiment, dimethylsilylene 26 generator 

methoxypentamethyldisilane 175 (0.899 mol) was copyrolyzed 

with 1-hexene (1.02 mol) at 545°C. Recovered in 46% yield 

was 1-hexene, with GLC analysis showing that isomeric 2-

and 3-hexenes, if formed, were present in < 3% yield. Also 

produced was methoxytrimethylsilane 45 in 37% yield. Star­

ting material 175 was recovered in 21% yield. Therefore 

it is apparent that any isomerization of alkenes arising 

from bimolecular silylene reactions is unique to hydrido-

silylenes- If dimethylsilylene 26 reacts with 1-hexene 

under these conditions, the silacyclopropane formed 

must merely revert to 26 and 1-hexene, without isomer­

ization of the hexene. 

+ 1-hexene îfe tfe 

Me Sisim Om — ^ Me„Si; ^ Si 
545°C, flow 2 ^ 

175 ^ - 1-hexene 
- IfeOSitfe^ ^"4^9 

45 (37%) -
2.- or 3-hexenes 
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As discussed in the Historical section, Erwin et 

al. have suggested, on the basis of thermodynamic consider­

ations, that the decomposition of alkylsilylenes to alkenes 

proceeds in a concerted fashion, and that no silacyclopro-

pane may be involved (54) . This proposed mechanism, if 

true, would explain our results, including deuterium scram­

bling and isomeric alkene formation, according to the 

process diagrammed in Scheme 34. Direct decomposition of 

an alkylsilylene (X = H, D or Me) forms silylene 176 and 1-

alkene 177. Scrambling and double bond isomerization could 

occur by the reverse of this process, "hydrosilation" of 

the initially formed alkene 177 by silylene 176, which 

could occur with incorporation of silicon on C2 of the 

alkene forming species such as alkylsilylene 178. 

Scheme 34 

XSiH + 
9 # 

X = H, D or Me 176 177 

+ 

HSiX 176 178 
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Whether the mechanism of Scheme 34 is exclusively 

responsible for the scrambling and isomerization reactions 

discussed in this section can be tested by demonstrating 

that olefin isomerization occurs under conditions where 

bimolecular reactions have been completely suppressed. The 

copyrolysis of 162 in butadiene appears to meet this con­

dition. When 162 was spiked with 26 mol % 1-hexene and 

pyrolyzed in a stream of butadiene at 585°C (Table 12, Run 

9), a 40% decrease in the ratio of total 2- and 3-hexene 

yields to the 1-hexene yield was observed (based on total 

moles of 162 and 1-hexene used). If hexylsilylene 164 

formed 1-hexene exclusively and the isomeric hexenes arose 

entirely via bimolecular chain processes (Scheme 34), then 

the added 1-hexene would be indistinguishable from the 

hexene formed from 164, and the yield ratio would be ex­

pected to change very little. In a qualitative sense, 

this does not appear to be the case. 

A more unambigous test was provided by the copyrolysis 

of 1-hexyl-l-methoxy-l,2,2,2-tetramethyldisilane 161 with 

butadiene and added 1-octene. The results are summarized 

in Scheme 35. Without 1-octene added, copyrolysis of 161 

in a stream of 1,3-butadiene (485°C) afforded as products 

methoxytrimethylsilane 45 (33%), 1-methyl-l-silacyclopent-

3-ene 15 (methylsilylene 17 adduct, 21%), 179, the trapping 
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product of hexylmethylsilylene 180 (9%), as well as the 

hexene products 1-hexene (19%), ̂ -2-hexene (4%), and a 

mixture of E-2-hexene/3-hexenes in a 4/1 ratio (8%). 

Compound 161 was recovered in 28% yield. When the pyro-

lysis of 161 in butadiene was repeated (1.44 mol, 500°C) 

with 1-octene (0.77 mol) added, the relative yields of 

products derived from 161 were insignificantly changed, and 

the 1-octene was recovered without isomerization. NMR 

analysis of the 1-octene, isolated by preparative GLC, and 

a thorough analysis of the pyrolysate by GC-MS failed to 

disclose the presence any isomers of 1-octene. It was also 

established that pyrolysis of 1-octene under these con­

ditions in a stream of butadiene did not result in any 

isomerization or fragmentation to hexene. This result 

demands that there must be a unimolecular pathway for the 

formation of 2- and 3-hexenes from 161. 

In summary, the research described in this section has 

demonstrated that the pyrolysis of alkyl silylenes (of 

carbon chain length C^), generated from a variety of pre-

cursers, affords mixtures of isomeric C^-alkenes. Deu­

terium incorporation and scrambling in the alkenes occurs 

when 1-deuterioalkylsilylenes are generated. These pheno­

mena are postulated to arise from a process which occurs 

even under conditions where radical or silylene chain reac-
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Scheme 35 

Me 

485°C 

Ms 

flow 

»0 
Si 

180 

161 - rfeOSUfe^ (33%) / \ 
l-hexene (19%) + ffeSiH 

*» 

17 Z-2-hexene (4%) 

iscmers (8%) 1 
Ms 

0 ( ^  
-"^6^13 

179 

(9%) 

,SiHMe 
O'" 
15 (21%) 

500°c 

151 + 1-octene •¥• 180 -• 179 

f 

1 
flow 

^ (7%) 

- MeOSiMs^ (48%) 

• 

1-octene 

(82% recovered, 

not isatierized) 

1-hexene (26%) 

MeSiH + Z-2-hexene (6%) 

isomers (10%) 
00 

17 

• 
15 (22%) 



www.manaraa.com

124 

tions are suppressed. Hence a unimolecular rearrangement 

is demanded, which is most economically explained as the 

result of a silylene-silacyclopropane isomerization 

reaction (Scheme 36). The product alkenes could either be 

formed directly from alkylsilenes (path a, dashed arrows 

Scheme 36), or from silacyclopropane intermediates (path 

b). The data in this dissertation do not allow a dis­

tinction to be made between these pathways, although the 

latter route is favored based upon the literature, which 

has conclusively demonstrated that silacyclopropanes ther­

mally decompose at low temperatures to silylenes and 

alkenes. 

These results have also found additional evidence that 

under some gas phase pyrolysis conditions the decomposition 

of silacyclopropanes to alkenes and smaller silylenes is 

reversible, i.e., that silylenes react with olefins more 

readily than has been believed in the past. It appears 

from this work that 1-hydridosilylenes may react with 

alkenes resulting in positional double bond isomerization 

of the olefin. However, in this research this problem was 

not directly addressed, and further research involving 

copyrolyses of hydridosilylene generators and alkenes is 

therefore suggested. 

The decomposition of alkylsilylenes via g-C-H 
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insertion appears to occur exclusively in preference to y-, 

Ô-, or e-C-H insertion (paths c, d, and e. Scheme 36), which 

would produce silacyclobutanes, silacyclopentanes, or sila-

cyclohexanes, respectively, none of which appeared to have 

ever been formed by alkylsilylenes in this research. 

Finally, the data produced by the generation of alkyl­

silylenes has allowed no additional conclusions to be made 

regarding the controversial and interesting question (12, 

13) of the silylene-silene isomerization via 1,2-H shift 

(which may be regarded as an "a-c-H insertion," path f). 



www.manaraa.com

126 

Scheme 3 6 
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CONCLUSION 

A thorough study of 1,1-dideuterio-l-silacyclobutane 

IZ-dg and l-deuterio-l-methyl-l-silacyclobutane 90-d^ has 

established that such silacyclobutanes thermally yield 

propene via an initial C-D, a-elimination (1,2-deuterium 

shift). Propene is formed from either 12-d2 or 90-dj^ under 

FVP conditions (at ca. 700°C) with predominant incorpor­

ation of deuterium (e.g., 21% d Q, 59% d and 18% d 2 from 

12-d^). Trapping experiments verified that the silylene 18 

(H^Si:) produced in the propene-forming pathway is 

deuterated in a complimentary fashion (30% d^, 53% d^, and 

17% d^) to the propene. Positional scrambling of the label 

in the propene was also observed. 

When alkylsilylenes were independently generated from 

known thermal silylene precursors, 1-deuterioalkylsilylenes 

afforded deuterated alkenes, and alkylsilylenes with C^ or 

longer carbon chains yielded isomeric n-alkene product 

mixtures. A unimolecular silylene rearrangement process 

was implicated based upon the results of pyrolyzing n-

hexylsilane 162 under varied nitrogen, ethene, and buta­

diene gas flow conditions, and the results from the copyro-

lysis of l-methoxy-l-n-hexyl-l,2,2,2-tetramethyldisilane 

161 with 1,3-butadiene. The results were found to be in 
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accord with a proposed alkylsilylene-silacyclopropane 

isomerization, occurring through a reversible 6-C-H 

silylene insertion reaction. This 3-insertion reaction was 

found to be exclusive in preference to other insertion 

reactions, since no products which would indicate y-, 6-, 

or e-insertion could be detected. 

A consideration of the results from the pyrolyses of 

deuterated silacyclobutanes vs. the results from the 

pyrolysis of known silylene precursors however points to an 

unresolved dilemma in this research. The pyrolysis of 12-d^ 

resulted in the formation of ca. 18% d^ propene vs. 5 9% d^ 

propene. This is clearly at odds with what would be 

predicted based upon the result that 1-deuterio-l-n-propyl-

silylene 20-d^, generated under comparable conditions from 

the disilane precursor 1-n-propyl-l,1,-dideuterio-2,2,2-

trimethyldisilane ISS-d^, afforded 60-62% d^ propene and 

38-40% d^ propene. Complete consistency of these results 

would demand the conclusion that either IZ-d^ should form 

more d^ than d^ propene, or ISS-d^ should have produced a 

much lower ratio of d, to d^ crooene. In a similar 
1 0 ' 

fashion, although various alkylsilylenes yielded a dis­

tribution of n-alkene products, the propene formed in the 

pyrolysis of 90-d^ contained deuterium only in the 3-

position. A similar double bond isomerization should have 
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yielded 1-deuteriopropene. 

Thus it appears that comparable alkylsilylene 

intermediates, generated under the similar conditions of 

temperature and pressure, are giving rise to different 

product distributions when generated from different pre-

cursers. The suggestion therefore deserves consideration 

that alkylsilylenes produced in the pyrolysis of hydrido-

silacyclobutanes vs. alkylsilylenes produced in the pyro­

lysis of hydrido- or methoxydisilanes may react from 

energetically different states. Two suggestions seem 

reasonable: (a) that an alkylsilylene may decompose via 

competitive pathways either directly to an alkene and a 

simpler silylene (path a, Scheme 37), or through a sila­

cyclopropane intermediate (path b), the partioning between 

the two pathways being dependent upon the internal energy 

(electronic or vibrational) of the silylene, and (b) that 

the silacyclopropane intermediate will either decompose to 

a silylene and an alkene (path c) or isomerize to an alkyl­

silylene (path d), with the relative rates of the two 

processes being dependent upon the internal energy of the 

silacyclopropane. In either case, the differences in the 

product yields must be related to the initially formed 

state of the alkylsilylene involved. 

Experimental work and theoretical calculations have 
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Scheme 37 
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found the first excited singlet state (^B^) of silylene 18 

to lie some 44-50 kcal/mol above the singlet ground state, 

which is unlikely to be significantly changed by mere 

substitution of a propyl group (94). Clearly the energetic 

requirements for formation of this state are too high. The 

lowest triplet state, on the other hand, lies in a much 

more accessible range (15-20 kcal/mol) (94, 95). The 

initial thermal formation of a triplet silylene from a 

disilanyl precursor is spin-forbidden, although it could be 

envisaged as resulting from a stepwise decomposition of a 

hydridosilacyclobutane (Scheme 38). 
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Scheme 38 
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However nothing is now known regarding the relative 

energetics of such 1,4-silicon-carbon diradicals as 181a 

and 181b. This mechanism is also in conflict with the fact 

that silylene-forming eliminations are generally molecular 

in nature, including the elimination of methane from 

methylsilane (see Historical section) which appears to 

occur as a concerted, single step process (34). 

Another possibility is that an alkylsilylene formed 

from either hydridosilacyclobutane decomposition or one 

from a disilanyl precursor might be formed as a vibration-

ally excited, "hot" silylene showing distinctive reactivity 

patterns. Hot intermediates have been proposed to explain 

apparently anomolous results in the case of 1,4-diradicals 

(96, 97), thermal decompositions of strained ring systems 

(98-101), and the photolysis of cyclobutanones (102), to 
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name just a few examples. In organosilicon chemistry, 

dimethylsilacyclobutane 1 formed by chemical activation 

by insertion of singlet methylene into the Si-H bond of 1-

methyl-l-silacyclobutane 90 shows, in common with the 

normal pyrolysis of 1, predominant ethene formation, but, 

in addition, an approximately 15% yield of other products, 

including propene, cyclopropane, and methane, is also 

formed. The product distribution in this experiment is 

strikingly similar to that observed in the direct photo­

lysis of 1, and therefore both chemical activation and 

photolysis were postulated to result in a common, vibra-

tionally excited intermediate 1* (Scheme 39) (103). 

Scheme 3 9 

Me 

1 
CHg + H—Si 

1 
1* 

(* denotes vibrationally 

hot state) 

CgHj (1.00) + CgHg (0.08) 

+ C-CgHg (0.05) + CH^ (0.05) 

h ic 
1 ¥ 1 (S^) 
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Another example from organosilicon chemistry may be 

found in the deomposition of hot g-trifluoromethylsilanes 

FgCCHgSiXg (X = Me or F) formed from the radical recom­

bination of trifluoromethyl and a-silyl radicals (104-106). 

FgC* + "CHgSiXg ^ F^CH^SlX^* 

(* denotes hot molecule) ^ [M] 

FgCCHgSiXg F^Cz^CH^ + FSiXg 

A legitimate criticism of this suggestion of a hot 

silylene is that well-documented cases of hot molecule 

reactions typically involve formation of the excited 

species in exothermic processes, usually driven by ring 

strain relief, chemical activation (as in the insertion of 

methylene into the Si-H bond of 90 cited above, which is 

exothermic by ca. 118 kcal/mol), or by internal conversion 

of a higher energy, photolytically generated intermediate 

(S —>S ). All of the silylene-forming reactions discussed 
1 0 

in this dissertation are by contrast clearly endothermic. 

Therefore further research is in order to explore this 

question, concentrating on more quantitative investigation 

of product distributions (including deuterium incor­

poration) of alkylsilylenes as they are affected by bath 
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gas pressure (which leads to cooling of hot species by 

collisional deactivation). For example, if a hot silylene 

is formed in the decomposition of 1,1-dideuterio-l-sila-

cyclobutane 12, this should be revealed by investigation of 

the deuterium incorporation in the propene formed as a 

function of bath gas pressure. Generation of chemically 

activated 1-deuterio-l-methylsilacyclobutane go-d^, and of 

alkylsilylenes by photolysis or chemical activation, should 

also lead to interesting extensions of this work. 
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EXPERIMENTAL 

General Procedures for Flash Vacuum Pyrolyses (FVP) 

Flash vacuum pyrolyses (FVP) were performed by slowly 

distilling compounds through a heated, seasoned horizontal 

quartz pyrolysis tube (15 mm I. D.) packed with quartz 

chips, and collecting the products in a trap cooled by 

liquid nitrogen. The tube was evacuated by a Varian oil 

diffusion pump to ca. 10 ^ mm Hg. Vacuums were measured by 

an ion gauge placed behind a liquid nitrogen cooled trap. 

The pyrolysis of some compounds, especially hydridosilanes, 

was accompanied by the formation of noncondensables, e.g., 

dihydrogen. Unless otherwise specified, vacuums quoted 

represent vacuums measured during the pyrolysis by the ion 

gauge. The rate of pyrolysis was controlled by attenuating 

the rate of distillation by either cooling the distilling 

flask with a COg ( s ) /i^-PrOH cooling bath or by partially 

closing a sequence of two greaseless vacuum stopcocks (J. 

Young and Co.) placed between the distilling flask and the 

entrance to the hot zone. The rate of pyrolysis was 

modulated in this fashion to maintain a constant pressure 

-4 -3 
(measured at the ion gauge), typically 10 to 10 mm Hg. 

The rate of distillation of compounds being pyrolyzed was 

on the order of 0.1 g per hour. In the course of this 
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work, a 0-10 mm Hg Baratron vacuum gauge was installed to 

measure the pressure in the reaction zone, placed either 

immediately before or after the hot zone. Where available, 

pressures so measured were used to monitor the rate of 

distillation of the compound being pyrolyzed, and are 

quoted as "reaction zone pressures", which typically fell 

in the range 0.050-0.15 mm Hg. The installed guage was 

found to show a random variation in the reading of + 2 X 

10"3 mm Hg. The pyrolysis tube was heated with a Lindberg 

oven. The reaction zone was approximately 200 mm in 

length. Temperatures were measured at the center, and were 

controlled by an Omega CN 300 temperature controller. 

Where gaseous products were formed in FVP experiments, 

the products were collected after emerging from the hot 

zone, and upon completion of the pyrolysis, distilled into 

a second trap constructed of a 50 or 100 mL volume round 

bottom flask attached to a greaseless vacuum stopcock (J. 

Young and Co.). The gases could be sampled via a gas-tight 

syringe through a septum, and analyzed by gas chromato­

graphy or GCMS (see "Instrumentation", below, this 

section). If bromine was added to the gas bulb before the 

products were transferred to it, this setup provided a 

good method for trapping the volatile alkenes and charac­

terizing them by the dibromides formed. 
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General Procedures for Flow Pyrolyses 

Flow pyrolyses were conducted in a vertical quartz 

pyrolysis tube packed with seasoned quartz chips. Samples 

were added to the top of the tube by syringe and the pyro-

lysate was swept through the quartz tube with a gas flow, 

typically at a flow rate of 35 mL/min. The products were 

collected in a dry ice/iso-propanol cooled trap. Tempera­

tures were measured and controlled by an Omega CN 300 

temperature controller. 

Instrumentation 

All proton NMR (^H NMR) spectra were recorded on a 

Nicolet Model NT-300 spectrometer (at 300 MHz). Proton 

chemical shifts are reported as parts-per-million (6 scale) 

using residual protons from either chloroform-d (6 7.25) or 

13 benzene-dg (6 7.15) as internal standards. C NMR spectra 

were obtained on the NT-300 spectrometer (at 75 MHz), and 

chemical shifts are reported as parts-per-million (6 scale) 

using either solvent chloroform-d (ô 77.00) or benzene-dg 

2 (S 128.00) as internal standards. H NMR spectra were 

recorded on a Bruker WM-300 spectrometer (at 46 MHz) in 

benzene solution, with chemical shifts reported as parts-

per-million (g scale) using natural abundance deuterium in 

benzene as internal standard (Ô 7.15). 
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Capillary gas chromatographic analyses were performed 

on either a Hewlett Packard 5890 or 5790 model gas chro-

matograph using either a 12 m or a 30 m RSL-150 column. 

Preparative GLC was performed on either a Varian model 920 

or 1700 gas chromatograph. Column size and packing will be 

reported as used. 

Chromatography of gas samples was performed using a 

Fisher Series 4800 gas chromatograph with thermal conduc­

tivity (TC) detection. Columns employed were either a 1/8" 

X 30' 23% SP-1700 on Chromosorb-P-AW column or a 1/8" X 6' 

Unibeads 2S column. GCMS of gas samples was performed on a 

Finnegan Model 4023 Gas Chromatograph-Mass Spectrometer 

using the Unibeads 28 column, unless otherwise specified. 

Gas chromatograph mass spectra (GCMS) were recorded on 

either a Finnegan Model 4023 Gas Chromatograph/Mass 

Spectrometer or a Hewlett Packard 5970 Mass Selective 

Detector attached to a a Hewlett Packard 58 90 Gas Chromato­

graph. Exact mass measurements were obtained on either an 

AEI MS-902 or a Kratos MS-50 Mass Spectrometer. Unless 

otherwise stated, all measurements were at 70 eV. 

Quantitative mass spectra for deuterium analyses were 

obtained on either the Finnegan 4023 GCMS or a Kratos MS-50 

Mass Spectrometer (neat samples), and were recorded at low 

eV. Corrected ion intensities and percent deuterium values 



www.manaraa.com

139 

were calculated by the method of Biemann (83). 

Infrared spectra (IR) were recorded on either a Beck-

mann IR 4250 or an IBM IR 98 (FTIR). Gas chromatograph 

infrared spectra (GCIR) were obtained on the IBM IR 98 

Spectrometer attached to a Hewlett Packard 5880 Gas Chro­

matograph equipped with a 30 m capillary column. All bands 

are reported in reciprocal centimeters (cm~^). 

Boiling points are reported uncorrected. Elemental 

Analyses were performed by either MicAnal (Tuscon AZ) or 

Galbraith Laboratories (Knoxville TN). 

Unless otherwise specified, all GC yields were cal­

culated using predetermined response factors and are 

absolute. 

Procedures and Results 

Synthesis of 1-silacyclobutane, 12 The synthesis 

of 12 was conducted by a modification of the procedure of 

Laane (82). 1,1-Dichlorosilacyclobutane (7.1 g, 0.050 mol) 

was added dropwise via syringe to a stirring slurry of 

LiAlH^ (1.13 g, 0.030 mol) in dibutyl ether (50 mL) at 

-23°C under a nitrogen atmosphere. After the addition the 

solution was gradually warmed to room temperature and 

stirred overnight. The product and solvent were then trap-

to-trap distilled from 25°C to -78°C under vacuum 
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(increased gradually from 50 mm Hg to full oil pump 

vacuum). Final distillation through a 5" X 1/2" frac­

tionating column packed with glass helices afforded 2.4 g 

(0.032 mol, 67%) of 12, bp. 43-45°C. Final purification 

was achieved by preparative GLC (20' 20% SE-30 on Chromo-

sorb W, 60°C isothermal). 

Synthesis of 1,l-dideuterio-l-silacyclobutane, 12-d2 

Compound 12-d.̂  (82) was prepared according to the procedure 

described for 12, except that LiAlD^ was used in place of 

LiAlH^. In a typical preparation, 4.0 g (0.028 mol) of 

1,1-dichloro-l-silacyclobutane was reduced with 1.0 g 

LiAlD^ in 50 ml of dibutyl ether and 1.3 g (0.017 mol, 

61%) of 12-d2 were obtained. Final purification was 

obtained by preparative GLC. NMR analysis of the 

product obtained indicated that quantitative deuteration 

was obtained: NMR (CgDg) g 1.02 (t, J = 8 Hz, 4.OH), 

2.12 (pentet, J = 8 Hz, 2.OH). Only a very small silyl 

hydride could be detected at 6 4.56 (m, ̂ O.OIH). MS 76 

(1.9), 75 (5.0), 74 (65.1), 73 (19.3), 72 (22.6), 71 

(10.9), 70 (7.5), 47 (12.2), 46 (100.0), 45 (87.8), 44 

(69.7), 43 (27.9), 42 (17.0). ^H NMR (CgHg) showed only a 

silyl deuteride at 5 4.67. 
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FVP of 1-silacyclobutane, 12 A total of 0.4352 g 

(6.04 mmol) of 12 were slowly distilled through a hori-

o 4 
zontal quartz-packed pyrolysis tube at 710 C at 5 X 10 mm 

Hg, and the products collected at -196°C. Warming the 

pyrolysate to 25°C was accompanied by considerable effer­

vescence. After liberation of the gases, the remaining 

pyrolysate (0.0690 g, 15% mass recovery) was analyzed by GC 

and GCMS, containing mostly unreacted 12 (8%), identified 

by NMR after isolation by preparative GLC (20' 20% SE-30 

on Chromosorb W, 60°C isothermal). 

FVP of 1-silacyclobutane 12 and trapping of products 

in bromine The pyrolysis of 12 was repeated as 

described above. The pyrolysate, initially trapped in a 

liquid nitrogen cooled trap, was distilled under vacuum 

into a gas bulb cooled to -196°C fitted with a greaseless 

vacuum stopcock containing a 2-fold molar excess of 

bromine. After standing overnight the bromine solution was 

dissolved in 50 mL methylene chloride and washed with 

saturated sodium sulfite in 1/1 methanol/water until the 

bromine color was removed, then twice with 100 mL water. 

After drying (MgSO^) the solvent was removed by rotary 

evaporation and the yellow residue extracted into 1.5 mL 

hexane. Analysis by capillary GLC indicated the formation 

of 1,2-dibromoethane (138) (Run 1 47%, Run 2 41%) and 1,2-
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dibromopropane (140) (Run 1 11%, Run 2 13%). 

FVP of 1,1-dideuterio-l-silacyclobutane, 12-d2 

Flash vacuum pyrolyses of l^-dg were conducted by slowly 

distilling the compound (typical scale: 0.2545 g, 3.44 

mmol) through a horizontal quartz-packed pyrolysis tube at 

710°C and collecting the products at -196°C. During the 

pyrolysis the vacuum rose from an initial value of 2 X 10~^ 

mm Hg, indicating the formation of non-condensables (e.g., 

dihydrogen), and the rate of distillation was controlled by 

cooling the sample of l^-dg with a dry ice/i-PrOH bath 

to maintain a constant pressure (measured at the ion gauge) 

-4 -3 of 10 to 10 mm Hg. Warming of the collected pyrolysate 

to room temperature resulted in considerable effervescence. 

After liberation of the gases, the remaining liquid, rep­

resenting 38% and 43% mass recovery in two runs, was 

analyzed by capillary GLC and GCMS, and found to consist of 

a single major component (> 90%), identified as recovered 

starting material. The recovered, deuterated 12 was 

isolated by preparative GLC (20* 20% SE-30 on Chromosorb W, 

60°C isothermal). Analysis by NMR showed only a silyl 

deuteride resonance at 6 4.67 (CgHg). Analysis by NMR 

showed some silyl hydride formation, with integration 

values of 0-14 H and 0.16H for the two runs, representing 

7% and 8% deuterium exchange (as silyl hydride formation) 
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respectively. 

The pyrolysis was repeated as described above, however 

the gases were collected and analyzed. GC and GCMS of the 

gaseous sample (18 eV) identified ethene as the major com­

ponent, along with propene in lesser amounts. Observed ion 

intensities for the ethene and propene, and calculated 

deuterium incorporations for the ethene and propene are 

presented in Table 2. The calculation" of the % deuterium 

incorporation, discussed in the Results and Discussion 

section, was performed by the method of Biemann (83). GLC 

of the gas sample, using literature TC response factors 

(87), afforded an estimate of the relative yields of 

propene and ethene as 86 mol % ethene and 14 mol % propene. 

GCMS of the gases also detected another major compo­

nent, base peak m/e = 46, possibly deuterated methylsilane, 

MS (18 eV) 50 (2.9), 49 (18.8), 48 (51.1), 47 (72.4), 46 

(100.0), 45 (43.7), 44 (11.9), 31 (16.5). Found in minor 

amounts were what may be deuterated silane 23, MS (18 eV) 

35 (2.6), 34 (40.0), 33 (45.3), 32 (100.0), 31 (68.4), 30 

(19.8), and deuterated dimethylsilane 34, MS (18 eV) 65 

(3.9), 64 (19.6), 63 (60.9), 62 (96.2), 61 (100.0), 60 

(75.1), 59 (25.0), 49 (14.5), 48 (40.0), 47 (59.2), 46 

(75.2), 45 (41.9). 
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FVP of 1,1-dideuterio-l-silacyclobutane 12-d2 and 

trapping of products in bromine. The FVP of IZ-dg 

(0.6008 g, 8.12 mmol) was repeated at 710°C as described 

above and the products were trapped at -196°C. The pyroly-

sate was distilled into a gas collection flask at -196°C 

which contained excess bromine (3-3 g, 21 mmol). After 

warming to room temperature and sitting overnight, the con­

tents were extracted into methylene chloride (50 mL) and 

washed with saturated sodium sulfite in 1/1 methanol/water 

until the bromine color dissappeared, and then washed twice 

with 100 mL of water. After drying (MgSO^) the solvent was 

removed by rotary evaporation to leave a yellow oil which 

was extracted into 1.5 mL hexane. The solution was 

analyzed by capillary GLC and GCMS, and the products were 

isolated by preparative GLC (15' 15% SE-30 on Chromosorb W, 

100°C isothermal). Only two significant products were 

detected, identified as 1,2-dibromoethane 139 (55%) and 

1,2-dibromopropane 140 (10%) by comparison of GC, GCMS, 

and NMR spectra with authentic samples. Deuterium 

incorporation was determined by measurement of mass 

spectral ion intensities and calculated by the method of 

Biemann (83). Mass spectral data along with per cent deu­

terium incorporation results and yield data are summarized 

in Table 3. 
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Spectral characteristics for the 1,2-dibromopropane 
1 

140 formed were as follows: H NMR (CI D ) 6 1.27-1.37 (m, 
6 6 

3H), 2.92 (t, J = 10 Hz, IH), 3.22 (d of d J = 10 Hz, J' = 

4 Hz, IH), 3.54-3-66 (m, IH). This matched an authentic 

sample of undeuterated 1,2-dibromopropane with the excep­

tion of the multiplet centered at 6 1.32 which was a 

2 doublet (J = 6.5 Hz) in the undeuterated sample. H NMR 

(C H ) 6 1.26 (m, deuteriums on methyl group), 2.89 (m) and 
5 6 

3.18 (m) (both diastereotopic methylene deuteriums), 3.54 

(m,. methine deuterium). Relative integration of the deu­

terium signals and distribution of deuterium in the 

dibromopropane are shown in Table 4. The results of two 

runs are shown. Run 1 and Run 2 of Tables 3 and 4 cor­

respond. The deuterium spectrum of the dibromopropane 

formed (Run 1) is reproduced in Fig. 1. 

Synthesis of 1-deuterio-l-methyl-l-silacyclobutane 

90-dl Compound 90-d^ was prepared by a method similar 

to that described for 1,1-dideuteriosilacyclobutane 12-d2 

(107). In a typical procedure 4.0 g of 1-chloro-l-methyl-l-

silacyclobutane (0.033 mol) was added dropwise via syringe 

to a stirring slurry of LiAlD^ (0.50 g, 0.012 mol) in 35 mL 

dry dibutyl ether at -23°C under nitrogen atmosphere. 

After stirring for 1 h at -23°C the solution was warmed to 

room temperature and stirred overnight. Trap-to-trap dis-
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tillation (25°C to -78°C under vacuum) afforded a solution 

of 90-d^ in Bu^O free of LiAlD^. Fractional distillation 

at 1 atm pressure through a 6" X 1/2" column packed with 

glass helices yielded 2.0 g (0.023 mol, 69%) product, bpt. 

64-5°C. Final purification was achieved by preparative GLC 

(10' 10% SE-30 on Chromosorb W, 60°C isothermal). The 

following spectral characteristics were recorded: NMR 

(CgDg) 5 0.15 (s, 3H), 0.80-1.00 (m, 2H), 1.06-1.22 (m, 

2H), 1.96-2.27 (m, 2H), (there was no trace of silyl 

hydride by H NMR); IR (neat) 2970 (s), 2930 (s), 2860 (w), 

2120 (vw) (residual SiH), 1540 (s) (Si-D), 1390 (w), 1245 

(m), 1115 (m), 865 (m), 780 (m) cm MS 87 (25), 60 (12), 

59 (100), 58 (45), 46 (16), 45 (51), 43 (71), 41 (12). 

FVP of 1-deuterio-l-methyl-l-silacyclobutane 90-dl 

Compound 90-d^ (0.081 g, 0.931 mmol) was distilled through 

a horizontal quartz-packed pyrolysis tube at 710°C at a 

pressure of 5 X 10 ^ mm Hg. The pyrolysate was collected 

in a liquid nitrogen cooled trap and then distilled under 

vacuum into a gas collection flask. Analysis by GCMS (70 

eV) indicated the presence of deuterated ethene (< 10% 

deuteration), MS 30 (0.8), 29 (10.7), 28 (100.0), 27 

(67.0), 26 (66.9), 25 (10.0), 24 (2.7); reference (un-

deuterated) ethene, run at the same time and conditions, 

MS 30 (0.0), 29 (2.0), 28 (100.0), 27 (46.9), 26 (48.2), 25 
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(7.2), 24 (1.9). Also detected in a much smaller amount 

was deuterated propene, MS (70 eV) 44 (3.3), 43 (48.0), 42 

(100.0), 41 (76.5), 40 (45.8), 39 (62.5), 38 (18.0), 37 

(10.6), 36 (1.9); reference propene run at the same time 

and conditions had the following MS: 43 (2.6), 42 (69.3), 

41 (100.0), 40 (25.7), 39 (72.2), 38 (18.0), 37 (10.9), 28 

(3.9), 27 (40.7), 26 (10.4). The deuterated propene peak 

in the GCMS was contaminated with unidentified impurities, 

therefore the mass spectral ion intensities of the propene 

in this experiment are admittedly uncertain, and the 

deuteration results obtained by bromination (vide infra) 

provide better quantitation. 

FVP of 1-deuterio-l-methylsilacyclobutane 90-dl and 

trapping of products in bromine Compound 90-d^ (0.7241 

g, 8.33 mmol) was slowly distilled through a horizontal 

quartz-packed pyrolysis tube at 710°C, pressure 5 X 10"^ mm 

Hg, and the products initially trapped in a liquid nitrogen 

cooled trap. The pyrolysate was distilled under vacuum 

into a gas collection flask containing excess bromine (2.0 

g, 12.5 mmol). After warming to 25°C the products were 

allowed to sit 2 h, then dissolved in 50 mL methylene 

chloride and washed with saturated sodium sulfite in 1/1 

methanol/water until the bromine color was removed. The 

organic phase was washed with 3 X 75 mL water, dried 
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(MgSO^), and the solvent removed by rotary evaporation to 

leave a yellow oil which was extracted into 1 mL of hexane. 

Analysis by capillary GLC and GCMS was used to identify 

1,2-dibromoethane 139 (29%) and 1,2-dibromopropane (140 

1%). The 140 formed was isolated by preparative GLC. The 

2 
H NMR (Fig. 2) of the 140 showed a single peak at 6 1.26 

(s). Very small resonances at ca. 6 3.0, 3.3, and 3.6 may 

be present (integrating to _< 15% of the methyl deuteride 

resonance at ô 1.26) which may belong to the 140, however, 

the sample obtained was too dilute (only milligram quan­

tities of 140 could be isolated) to allow any definite 

assignment of these faint signals, even after a 10,000 scan 

accumulation. The mass spectra of the 139 and 140 formed 

was obtained at low eV (21-25 eV), and ion intensities, 

corrected ion intensities, and percent deuterium results 

are presented in Table 5. 

Preparation of 3-deuteriopropene, 142 A total of 

19.5 g (0.161 mol) of allyl bromide in 200 mL dry ether 

were dropwise added under nitrogen at a rate sufficient to 

maintain a gentle reflux to a stirring slurry of Mg (5.0 g, 

0.21 mol) in which the reaction had been initiated with a 

crystal of iodine and 0.5 g 0.004 mol) of allyl bromide. 

After the addition was complete the solution was refluxed 

an additional 2 h. After cooling to room temperature the 
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Grignard reagent was quenched by a dropwise addition of 

D^O. The gas thus liberated was passed through an ethylene 

glycol/dry ice cooled condenser and a calcium sulfate 

drying tube and was frozen in a liquid nitrogen cooled 

trap. The trap containing the frozen propene was isolated 

from the reaction setup, evacuated to less than 1 mm Hg, 

and the gas formed was condensed into a steel gas cyclinder 

at -196°C, keeping the trap cooled to -78°C to minimize 

contamination by trace ether or other impurities. Obtained 

was 1.7 g (23%) propene. 

Preparation of 1,2-dibromo-3-deuteriopropane 140-dl 

The preparation of 3-deuteriopropene was repeated as des­

cribed above, except that the propene generated was passed 

through liquid bromine (10 mL) instead of the -196°C trap. 

The bromine solution containing the product was extracted 

into pentane and washed with saturated sodium sulfite in 

1/1 methanol/water until the bromine color was removed. 

The organic phase was washed twice with 100 mL water, dried 

(MgSO^) and rotary evaporated to leave 6.1 g (0.030 mol, 

35%) of nearly pure product, characterized as 1,2-dibromo-

3-deuteriopropane by its spectral characteristics. An 

analytical sample was isolated by preparative GLC (15' 15% 

SE-30 on Chromosorb W, 100 C isothermal). NMR (C ) 5 
D O 

1.31 (d of t where triplet is 1:1:1, ^ = 6.5 Hz, 
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J = 2.0 Hz, 2H), 2.96 (app. t, J = 10.0 Hz, IH), 3.25 (d 
D—H 
of d, J = 10.0 HZf J' = 4.4 Hz, IH), 3.51 (m, app. sextet, 

IH); NMR (CD^) g 23.70 (t, J _ = 19.3 Hz), 37.78, 
6 5 D—C 

45.93; ^H NMR (C H ) g 1.30 (m). The following mass 
6 6 

spectral ion intensities were used to calculate percent 

deuterium incorporation (Finnegan 4023 GCMS, 18 eV) : 200 

(2.28) (M+), 201 (51.26), 202 (6.11), 203 (100.00), 204 

(5.46), 205 (46.97), 206 (1.63); reference (undeuterated) 

1,2-dibromopropane, MS 200 (M+) (52.46), 201 (2.79), 202 

(100.00), 203 (4.24), 204 (47.94), 205 (1.89), 206 (0.27). 

A calculation of percent deuterium incorporation by the 

method of Biemann (83) gives 96% d^ and 4% d^. 

Pyrolysis of 3-deuteriopropene 142 Compound 142 

(50 mL at STP) was passed through a horizontal quartz 

packed pyrolysis tube at 10~^ mm Hg at 720°C and the 

products were collected in a liquid nitrogen cooled trap. 

The product was distilled into a gas collection flask 

containing 0.25 mL of bromine at -135°C. After warming to 

room temperature the products were extracted into methylene 

chloride, washed with saturated sodium sulfite in 1/1 

methanol/water until the bromine color was removed, then 

washed with water, dried, and rotary evaporated. A yellow 

oil remained which contained 1,2-dibromopropane as the 

major product. A sample isolated by preparative GLC had ^H 
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1 o 2 
NMR, C NMR, and H NMR spectral characteristics identical 

with l,2-dibromo-3-deuteriopropane prepared by direct 

bromination of 3-deuteriopropene. The following mass 

spectral ion intensities were obtained (Finnegan GCMS, 18 

eV): 200 (3.82), 201 (52.70), 202 (8.10), 203 (100.00), 

204 (5.44), 205 (49.46), 206 (2.32); reference 

(undeuterated) 1,2-dibromopropane 200 (52.67) (M+), 201 

(0.69), 202 (100.00), 203 (2.10), 204 (48.54), 205 (1.73), 

206 (0.15). A calculation of percent deuterium incor­

poration by the method of Biemann (83) indicates the 

product is 93% d^ and 7% dg. Considering the percent 

deuteration of dibromopropane prepared directly from 3-

deuteriopropene, there is a 97% retention of the deuterium 

label in the pyrolyzed 3-deuteriopropene. 

Copyrolysis of 1-silacyclobutane 12 with 2,3-dimethyl-

butadiene 119 Compound 12, dissolved in a 4- to 6-fold 

molar excess of 2,3-dimethylbutadiene, was dropwise added 

via syringe to a vertical quartz-packed pyrolysis tube 

swept with a nitrogen flow of 35 mL/min. In three runs, 

o 
over the temperature range 520-570 C, no 12 was recovered. 

Mass recoveries ranged from 54-61%. 

Capillary GLC, GCMS, and NMR of samples isolated by 
o 

preparative GLC (20' 20 % SE-30 on Chromosorb W, 50 C 

initial, 4° ramp) identified 3 major products: 3,4-di-
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methyl-l-silacyclohex-3-ene 143, 1,3,4-trimethyl-l-sila-

cyclopent-3-ene 144, and 3,4-dimethyl-l-silacyclopent-3-ene 

145. Yields for these products are included in Table 6. 

All efforts at preparative GLC failed to achieve highly 

purified samples of 144 and 145, and NMR identification 

was made by comparison of the spectra with those of authen­

tic samples of 144 and 145 obtained by independent syn­

thesis (vide infra). A fourth product was detected by GCMS 

in only trace amounts, the mass spectrum of which matched 

that of a sample of 3,4-dimethyl-l-n-propyl-l-silacyclo-

pent-3-ene 146, obtained by independent synthesis (vide 

infra). 

Compound 143 was identified by its spectral charac­

teristics: NMR (CgDg) Ô 0.72 (m, 2H, collapses to t, J 

= 3.5 Hz, with hv at S 1.98, and to t, J = 6.8 Hz, with hv 

at S 3.89), 1.28 (broad s, 2H), 1.59 (s, 3H), 1.64 (s, 3H), 

1.98 (t, J = 6.8 Hz, 2H, collapses to s with hv at 0.72), 

3.89 (app. pentet, collapses to t, J = 3.5 Hz, with hv at 

1.28, and to t, J = 3.0 Hz, with hv at 0.72); ̂ ^C NMR 

(CgDg) 63.95, 13.36, 20.90, 22.39, 29.83, 124.82, 129.96; 

IR (neat) 2930, 2905, 2850, 2140 (vs) (Si-H), 945 (vs), 855 

(s) cm~^; MS 126 (M+) (72), 125 (15), 111 (72), 98 (53), 97 

(85), 85 (32), 84 (78), 83 (100), 71 (33), 70 (49), 69 

(37), 67 (44), 59 (37), 58 (32), 55 (59), 53 (38); calc'd 
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for CyH^^Si m/e 126.0865, measured m/e 126.0865. Anal. 

Calc'd for C, 66.58; H, 11.17. Found: C, 66.41; 

H, 11.36. 

Synthesis of 1,3,4-trimethyl-l-silacyclopent-3-ene, 

144 1-Chloro-l,3,4-trimethyl-l-silacyclopent-3-ene 182 

was prepared as an intermediate by copyrolyzing 19.3 g of a 

solution of mixed chloromethyldisilanes (high boiling 

residue from the direct synthesis of mèthylchlorosilanes, 

supplied by Dow Corning Co., consisting of approximately 

15% 1,2-dichlorotetramethyldisilane, 30% 1,1,2-trichloro-

trimethyldisilane, and 30% 1,1,2,2-tetrachlorodimethyl-

disilane by uncorrected GCMS response) dissolved in 35.6 g 

(0.434 mol) of 2,3-dimethylbutadiene by rapid dropwise 

addition of the solution to a vertical quartz-packed pyro-

lysis tube at 625°C swept with nitrogen flow at 50 mL/min. 

The products were collected at -78°C and distilled at 1 atm 

pressure to remove volatiles. Vacuum distillation (60 mm 

Hg through a 4" X 1/2" glass helices fractionating column) 

afforded a continuous fraction boiling from 83-96°C, 8.4 g. 

Capillary GLC analysis showed the distillate to contain 4.2 

g of the desired 182 (0.026 mol). Preparative GLC afforded 

an analytical sample of 182, with the following spectral 

characteristics: NMR (CDClg) fi 0.58 (s, 3H), 1.58 (d, 

J = 14 Hz, 2H), 1.67 (d, J = 14 Hz, 2H), 1.71 (s, 6H, 
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overlaps with smaller peak of d at 1.57); NMR (CDCl^) 5 

1.21, 18.91, 27.48, 129.72; IR (neat) 2980, 2915, 2880, 

1440, 1390, 1255 (s), 1175 (s), 805 (s), 785 (s) cm"^; MS 

162 (36), 160 (100) (M+), 147 (34), 145 (97), 124 (48), 118 

(35), 109 (64), 105 (30), 79 (29), 59 (42); calc'd for 

C^HigClSi m/e 160.04751, measured m/e 160.04747. 

Compound 144 was obtained by adding 2.0 g of this 

distillate containing 182 (1.0 g, 6.2 mmol) dropwise to a 

stirring slurry of LiAlH^ (0.25 g, 6.4 mmol) in 4 mL THF at 

-23°C. After warming to 25°C and stirring overnight, the 

solution was trap-to-trap distilled (25°C to -78°C) under 

vacuum to remove it from the LiAlH^ and the resulting 

solution contained 0.281 g of 144, (2.23 mmol, 36% based on 

182). Final purification was achieved by preparative GLC. 

The following spectral characteristics were found; NMR 

(CfDf) 5 0.06 (d, J = 3.5 Hz, 3H), 1.28 (d, J = 18 Hz, 2H), 
b o 

1.57 (d, J = 18 Hz, 2H), 1.66 (s, 6H, partially overlaps 

smaller peak of d at 1.57), 4.35 (m, IH); ^^C NMR (CgDg) 5 

-4.15, 19.90, 23.72, 131.34; IR (neat) 2978, 2876, 2131 (s) 

(Si-H), 1443, 1250, 1175, 889, 829, 806, 748 cm~^; MS 126 

(48) (M+), 125 (15), 111 (100), 109 (32), 85 (23), 84 (27), 

83 (44), 71 (19), 69 (24), 67 (17), 59 (40), 58 (31), 55 

(18); calc'd for C^H^^Si m/e 126.08548, measured m/e 

126.08628. Anal. Calc'd for C^H^^Si: C, 66.58; H, 11.17. 
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Found; C, 66.65; H, 11.51. 

Preparation of 3,4-dimethyl-l-silacyclopent-3-ene, 145 

A solution containing 1,l-dichloro-3,4-dimethyl-l-sila-

cyclopent-3-ene 183 was prepared by dropwise addition of 

16.4 g of hexachlorodisilane (0.61 mol) dissolved in 30.4 g 

(0.37 mol) 2,3-dimethylbutadiene 119 to a vertical quartz-

packed pyrolysis tube at 610°C swept with a nitrogen flow 

of 60 mL/ min. The products were collected in a -78°C trap 

and distilled at 1 atm pressure to remove unreacted buta­

diene and other volatile products. Vacuum distillation at 

30 mm Hg through a 4" X 1/2" fractionating column packed 

with glass helices yielded a continuous fraction with the 

boiling range 82-90°C, 8.9 g, of approximately 85% pure 

product (by capillary GLC, uncorrected FID response). An 

analytical sample of 183 was obtained by preparative GLC 

(14' 15% SE-30 on Chromosorb W, 100°C initial, 8°/min 

ramp). Spectral characteristics found were: NMR (CgDg) 

5 1.36 (s, 6H), 1.55 (s, 4H); NMR (CgDg) 5 18.49, 29.08, 

129.28; IR (neat) 2980, 2905 (s), 2845, 1445 (s), 1390 (s), 

1370, 1165 (vs), 1105, 970, 780 (vs), 760 (vs), 745 (vs), 

685 cm"^; MS 182 (10), 180 (15) (M+), 167 (9), 165 (14), 

144 (13), 140 (7), 138 (10), 129 (13), 82 (50), 81 (14), 67 

(100), 65 (23), 63 (44), 54 (24), 53 (20); calc'd for 

CgH^^Cl^Si m/e 179.99289, measured m/e 179.99290. 
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This solution of 183 (1.0 g) was then added dropwise 

(neat) to a stirring slurry of LiAlH^ (0.15 g, 3.95 mmol) 

in 5 mis THF under nitrogen atmosphere at -23°C. After the 

addition, the solution was warmed to room temperature and 

stirred overnight. The solution was trap-to-trap distilled 

under vacuum from 25°C to a -78°C trap. Analysis by 

capillary GLC showed the distilled solution to contain 

0.407 g of 145 (3.64 mmol, 53% based on hexachloro-

disilane). Final purification was achieved by preparative 

GLC (14' 15% SE-30, 70°C initial, 8°/min ramp). Compound 

145 had the following spectral characteristics: NMR 

(C_D^) 6 1.43 (broad s, 4H), 1.59 (s, 6H), 4.04 (pentet, J 
D O 

= 3.7 Hz, collapses to s with hv at 1.43); ̂ ^C NMR (CD ) 6 
6 6 

19.11, 19.16, 131.00; IR (neat) 2950, 2900 (s), 2880 (s), 

2850 (s), 2850, 2130 (vs) (Si-H), 1435, 1165 (s), 940 (vs), 

895, 805 (vs), 790 (vs) cm"^; MS 112 (81) (M+), 111 (40), 

97 (100), 95 (46), 84 (38), 83 (43), 71 (34), 70 (54), 69 

(48), 67 (39), 55 (81), 53 (35); calc'd for C.H ̂ Si m/e 
6 12 

112.07083, measured m/e 112.07116. Anal. Calc'd for 

CgH^^Si: C, 64.20; H, 10.79. Found: C, 63.92; H, 11.03. 

Synthesis of 3,4-dimethyl-l-n-propyl-l-silacyclopent-

3-ene, 146 l-Chloro-l-n-propyl-3,4-dimethyl-l-sila-

cyclopent-3-ene 184 was first prepared by adding 1.75 g 

(14.2 mmol) of n-propyl bromide dropwise as a neat solution 
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via syringe over 20 min to a stirring slurry of 0.50 g (72 

mmol) Li in 25 mL ether under argon atmosphere with wire 

whip stirring. After the addition the solution was stirred 

an additional 0.5 h, and the anion was transferred dropwise 

over 30 min via canula to a stirring solution of 2.57 g of 

approximately 85% pure 1,l-dichloro-3,4-dimethyl-l-sila-

cyclopent-3-ene 183, the preparation of which is described 

in the synthesis of 145 (vide supra), in 50 mL ether at 

-78°C. After the transfer the solution was warmed to 25°C 

and stirred overnight. Precipitated salts were filtered 

through celite/sintered glass and the ether removed by 

distillation. The residue was trap-to-trap distilled, 

under vacuum with gentle heating, to a -78°C trap. The 

distillate was found to contain 0.503 g of 184 by capillary 

GLC yield (2.67 mmol, 15% overall yield from hexachloro-

disilane). Final purification of the 184 was achieved by 

preparative GLC (12' 12% QF-1-0065 on Chromosorb W, 160°C 

isothermal) to afford 0.262 g pure 184; NMR (CgDg) 5 

0.79 (t, J = 8 Hz, collapses to s with hv at 1.39, 2H), 

0.87 (t, J = 7.3 Hz, collapses to s with hv at 1.39, 3H), 

1.39 (m, app. sextet, J = 8 Hz, 2H, overlaps s at 1.45), 

1.45 (broad s, 2H, overlaps 1.39), 1.58 (s, 6H, overlaps 

1.62), 1.62 (broad s, 2H); NMR (CgDg) 5 17.20, 17.47, 

18.95, 19.54, 26.59, 129.96; MS 190 (20), 188 (55) (M+), 
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147 (37), 146 (32), 145 (100), 131 (20), 110 (24), 109 

(27), 63 (35); calc'd for C^H^^ClSi m/e 188.07881, measured 

m/e 188.07887. 

Compound 184 (0.251 g, 1.38 mmol) was dropwise added 

neat via syringe to a stirring slurry of LiAlH^ (0.082 g, 

2.2 mmol) in 2 mL THF under nitrogen at -23°C. The 

solution was warmed to 25°C and stirred overnight. Trap-

to-trap distillation (25°C to -78°C) under vacuum gave a 

solution containing 0.141 g product 146 (0.91 mmol, 56% GLC 

yield). Final purification was achieved by preparative GLC 

(14' 15% SE-30 of Chromosorb W, 60° initial, 4°/min ramp). 

Compound 145 had the following spectral characteristics: 

NMR (CgDg) S 0.51 (t of d, collapses to t, J = 7.8 Hz, 

with hv at 4.31, and to d, J = 3.0 Hz, with hv at 1.40, 2H), 

0.93 (t, J = 7.3 Hz, collapses to s with hv at 1.40, 3H), 

1.25-1.45 (overlapping multiplets, including half of AB 

pattern characteristic of silacyclopentene allylic ring 

protons, and the two methylene protons of the propyl group, 

4H), 1.56 (d of broadened peaks, other half of AB pattern, 

J = 18 Hz, collapses to s with hv at 1.40, peaks sharpen 

with hv at 4.31, 2H), 4.31 (m, app. septet, J = 3.2 Hz, 

collapses to pentet, J = 3.2 Hz, with hv at 0.61, and to 

broad s with hv at 1.40, IH); ^^C NMR (CgDg) S 14.92, 17.84, 

18.45, 19.33, 21.73, 130.08; IR (neat) 2960 (s), 2905 (s). 
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—1 
2865 (s), 2110 (s) (Si-H), 1165 (s), 845 (s) cm ; MS 154 

(57) (M+), 112 (39), 111 (100), 109 (25), 97 (37), 69 (21), 

67 (23); calc'd for CgH^gSl m/e 154.1178, measured m/e 

154.1183. Anal. Calc'd for CgH^gSi: C, 70.05; H, 11.76. 

Found; C, 69.95; H, 11.91. 

Copyrolysis of 1,1-dideuterio-l-silacyclobutane 12-d2 

with 2,3-dimethyl-1,3-butadiene 119 The procedure 

followed as closely as possible that described for the 

copyrolysis of 12 with 2,3-dimethy1-1,3-butadiene. Com­

pound 12-d2, dissolved in a 4.7- to 6.2-fold molar excess 

of the butadiene, was added dropwise via syringe drive to a 

vertical quartz-packed pyrolysis tube swept with a nitrogen 

flow of 35 mL/min and the products were collected at -78°C. 

The pyrolysis was repeated three times over the temperature 

range 520-540°C, and once at 570°C. Capillary GLC and 

GCMS indicated the formation of the same products as 

described in the copyrolysis of 12, although deuterated. 

Products were isolated by preparative GLC (15' 15% SE-30 on 

Chromosorb W, 50° initial, 4°/min ramp) and identified on 

the basis of their NMR, IR, and mass spectral character­

istics as deuterated 3,4-dimethyl-l-silacyclohex-3-ene 143, 

deuterated 1,3,4-trimethyl-l-silacyclopent-3-ene 144, and 

deuterated 3,4-dimethyl-l-silacyclopent-3-ene 145. Yield 

data for the products characterized are included in Table 
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6. Compounds 144 and 145 could not be totally purified by 

preparative GLC, and impurities in the NMR could not be 

avoided, although the spectra are clearly distinguishable. 

Unreacted l^-d^ was found in only small {< 3%) amounts. At 

higher temperature, as is apparent from Run 7, Table 6 

(570°C), the yields of all products dropped precipitously. 

Spectral data were obtained from Run 4 (Table 6), 

unless otherwise noted. NMR chemical shifts were 

matched against authentic standards. Mass spectral data 

(obtained by GCMS because of the difficulty of obtaining 

adequately pure neat samples of 144 and 145 by preparative 

GLC) for compounds 143, 144, and 145 and percent deuterium 

calculations are reported in Table 7. 

Recovered starting material (IZ-d^) had the following 

MS data; MS 76 (1.7), 75 (4.6), 74 (49.8), 72 (17.4), 71 

(9.7), 70 (8.6), 46 (100.0), 45 (94.0). 

Compounds 143-145 had the following spectral proper­

ties. For deuterated 143: NMR (CgDg) 5 0.69 (t, J = 

6.7 Hz, collapses to s with hv at 1.99, 2H), 1.27 (s, 2H).-

1.59 (s, 3H), 1.65 (s, 3H), 1.99 (t, J = 6.7 Hz, collapses 

to s with hv at 0-69, 2H), a small silyl hydride was found 

at 6 3.87 (broad s, 0.06 H); NMR (CgHg) ô 3.89 (s), no 

other resonances were found; IR (GC-FTIR) (Run 5, Table 6) 

2940 (s), 2865 (m), 2140 (vw) (residual Si-H), 1560 (vs) 
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(Si-D) cm~^. For deuterated 144; NMR (C^Dg) 6 0.07 (m, 

2.6H), 1.29 (d, J = 18 Hz, 2.OH), 1.58 (d, J = 18 Hz, 

integral undetermined due to unknown impurity), 1.67 (s, 

6H), 4.36 (m, apparent sextet, J = 3.3 Hz, 0.25H); ^H NMR 

(C^Hf) 5 0.05 (apparent 1:2:1 t, J = 2.0 Hz, 0.79D), 
o D H—D 

4.37 (s, l.OOD); IR (GC-FTIR) (Run 5, Table 6) 2915 (vs), 

2130 (s) (Si-H), 1560 (vs) (Si-D), 1180 (s), 890, 800 (vs) 

cm" . The H and H NMR integration data for compound 144 

are diagrammed in Fig. 3. For 145 (deuterated); ^H NMR 

(CfCU) 6 1.43 (s, 4.OH), 1.59 (s 6.OH), 4.04 (pent, J = 
O D 

3.8 Hz, 1.2H); ^H NMR (C^Hg) ô 4.04 (Si-D), (no other 

resonances were found); IR (GC-FTIR) (Run 5, Table 6) 2915 

(s), 2130 (vs) (Si-H), 1560 (s) (Si-D) cm"^. 

Mass spectra of deuterated samples 143, 144, and 145 

were determined at low eV (12 eV, Finnegan 4023 GCMS) and 

compared with reference spectra of authentic undeuterated 

compounds determined at the same time and conditions. 

These results are presented in Table 7. Corrected ion 

intensities and percent deuterium results were calculated 

by the method of Biemann (83). For compounds 144 and 145 

the large M-1 ion in the reference sample diminishes the 

accuracy of these calculations and therefore the results 

quoted are at best close estimates of the true deuterium 

incorporation. 
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Synthesis of 1,l-dideuterio-3,4-dimethyl-l-silacyclo-

pent-3-ene, 145c Compound 145c was prepared by the 

method described for the preparation of 145 (using the 85% 

pure 183) in 43% overall yield (by GLC) from hexachloro-

disilane. Final purification was obtained on a 8' 15% SE-

30 on Chromosorb W column, 70°C isothermal. Spectral 

characteristics were: NMR (C^D ) 6 1.42 (s, 4H), 1-64 
b b 

(s, 6H), (no Si-H was found); IR (neat) 2985 (m), 2915 (s), 

2885 (s), 2860 (s), 2860 (m), 2140 (vw) (residual Si-H), 

1560 (vs) (Si-D), 1445 (m), 1175 (s), 765 (s), 735 (s), 680 

(vs), cm~^, (the very weak band at 2140 cm~^ indicates only 

a trace of Si-H); MS (10.3 eV, Kratos MS-50, neat sample) 

116 (3.8), 115 (11.9), 114 (100.0), 113 (3.6), 112 (1.0). 

Mass spectral measurements (Kratos MS 50, neat samples) and 

a calculation by the method of Biemann (83) indicated the 

product 145c was 2 95% d^. The MS results with % deuterium 

calculations are included in Table 8. 

Flow pyrolysis of 1,l-dideuterio-3,4-dimethyl-l-sila-

cyclopent-3-ene 145c in excess 2,3-dimethy1-1,3-butadiene 

119 A solution of 0.2075 g of 145c (1.82 mmol), dis­

solved in 1.5990 g (19.5 mmol) of 2,3-dimethyl-l,3-buta-

diene 119 was slowly added dropwise via syringe drive to a 

vertical quartz-packed pyrolysis tube at 535swept with a 

nitrogen gas flow of 35 mL/min. The products were col­
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lected at -78°C with a 67% mass recovery. The major com­

ponents of the pyrolysate were recovered starting material 

(18% GLC yield) and dimethylbutadiene 119 by capillary GLC 

and GC-MS analysis- Preparative GLC of the recovered, 

deuterated 145 (8' 15% SE-30 on Chromosorb W, 70°C iso­

thermal) afforded a sample whose spectral characteristics 

were little changed from unpyrolyzed 145c: NMR (C,D,) g 
D D 

1.42 (s, 4H), 1.64 (s, 6H); NMR (CgHg) g 4.0 (s), no 

other signals were found; IR (neat) 2985 (m), 2915 (s), 

2885 (s), 2860 (m), 2140 (w) (Si-H), 1560 (vs) (Si-D), 1175 

(s), 765 (s), 735 (s), 680 (vs) cm the band at 2140 cm ^ 

has increased somewhat in relative intensity relative to 

unpyrolyzed 145c. The mass spectrum was determined (10.3 

eV, Kratos MS-50, neat sample) and ion intensities, cor­

rected ion intensities, and percent deuterium incorporation 

calculated by the method of Biemann (83) are included in 

Table 8. 

Synthesis of 1-n-propyl-l-methoxy-l,2,2,2-tetramethyl-

disilane, 150 Neat 1-bromopropane (3.25 g, 0.026 mol) 

was added dropwise via syringe over 20 min to a stirring 

slurry of 0.80 g (0.115 mol) lithium wire (cut into small 

pieces) in 40 mL dry ether stirred with a wire whip under 

argon. After the addition the anion was slowly transferred 

via canula to a vigorously stirred solution of 4.68 g 
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(0.025 mol) of 1,1-dichlorotetramethyldisilane 151 (85) in 100 

mL ether chilled to -23°C. The solution was warmed to 25°C 

after the addition and stirred an additional 4 h. Then an 

equimolar solution (0.27 mol each) of pyridine/methanol was 

added at once, and stirring was continued for an additional 

6 h. Filtration through celite/sintered glass, rotary 

evaporation of solvent, precipitation of the remaining 

salts by addition of pentane, and refiltration through 

celite/sintered glass was followed by rotary evaporation of 

solvent and vacuum distillation through a 4" X 1/2" 

fractionation column packed with glass helices to afford 

1.50 g product (0.0080 mol, 30%), bp 105-110°C at 85 mm Hg. 

Final purification was achieved by preparative GLC (15' 10% 

OV-101 on Chromosorb W, 130°C initial, 2°/min program) . 

Spectral characteristics found were: NMR (CDClg) ô 0.09 

(s, 9H), 0.16 (s, 3H), 0.61-0.81 (m, 2H), 0.967 (t, J = 7.2 

Hz, 3H), 1.40 (app. sextet, J = 7.5 hz, 2H), 3.41 (s, 3H); 

13 
C NMR (CDCI3) ô -3.10, -1.58, 16.95, 18.16, 19.05, 51.32; 

IR (neat) 2963 (s), 2897 (s), 2872 (s), 2827 (s), 1456, 

1405, 1246 (s), 1088 (s), 955, 866 (s), 756 (s) cm~^; MS 190 

(3.2) (M+), 175 (5.3), 161 (0.6), 148 (6.3), 147 (17.5), 

135 (9.7), 134 (17.1), 133 (100.0), 117 (29.8),89 (9.6), 75 

(71.6), 73 (35.8), 59 (34.7); calc'd for CgH220Si2 m/e 

190.12100, measured m/e 190.12093. Anal. Calc'd for 
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CgH220Si2: C, 50.45; H, 11.64. Found: C, 50.59; H, 

11.93. 

FVP of 1-n-propyl-l-methoxy-l, 2 , 2 ,2-tetramethyl-

disilane, 150 Compound 150 (0.2993 g, 1.57 mmol) was 

distilled at room temperature through a horizontal quartz-

packed pyrolysis tube at 10"^ mm Hg pressure heated to 

650°C. The products were collected in a liquid nitrogen 

cooled trap. After the pyrolysis the products were 

isolated from the hot zone and the vacuum inlet and 

separated into a liquid fraction and a gaseous fraction by 

warming the initial trap to -78°C under vacuum and con­

densing the gases thus liberated into a 50 mL gas col­

lection flask at -196°C. The liquid remaining in the -78°C 

trap (24% mass recovery) consisted almost entirely of a 

single component (MeOSiMe^ 45) by capillary GC and GCMS. A 

thorough search of the GCMS chromatogram failed to disclose 

the presence of any 1-methyl-l-silacyclobutane 90. Anal­

ysis of the gaseous fraction by GCMS (Finnegan 4023 GC/Mass 

Spectrometer) revealed the major component to be propene on 

the basis of its mass spectrum (18 eV): MS 44 (0.6), 43 

(4.1), 42 (100), 41 (63.2), 40 (16.9), 39 (9.5), 28 (1.0), 

27 (8.5), 26 (0.7). Also identified by GCMS were ethene, in 

only a trace i< 1% of propene) amount, MS 29 (2.6), 28 

(100.0), 27 (3.8), a compound which may be methylsilane 
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(estimated as ca. 23% of propene by uncorrected GCMS total 

ion current), MS 47 (2.1), 46 (7.3), 45 (62.6), 44 (100.0), 

43 (8.6), 31 (5.6), 30 (19.5), a small amount (< 10% of 

propene by uncorrected GCMS total ion current) of a 

compound which may be dimethylsilane, MS 61 (3.3), 60 

(10.2), 59 (100.0), 58 (89.5), 57 (2.5), 47 (1.1), 45 

(4.3), 45 (40.7), 44 (64.4), 43 (9.3), 31 (6.5), and a 

trace of trimethylsilane, MS 75 (2.8), 74 (6.3), 73 (74.2), 

61 (3.3), 60 (8.3), 59 (100.0), 58 (31.8), 45 (3.7), 31 

(3.6) . 

Copyrolysis of 1-n-propyl-l-methoxy-l,2,2,2-tetra-

methyldisilane 150 and 2,3-dimethyl-l,3-butadiene 119 A 

solution of 0.5264 g 150 (3.19 mmol) in 1.42 g 2,3-di­

methyl-l , 3-butadiene 119 (17.3 mmol) was dropwise added via 

syringe drive over 1 h to a seasoned vertical quartz-packed 

pyrolysis tube at 540°C swept with a nitrogen flow of 35 

mL/min. The products were collected in a dry ice/iso-

propanol cooled trap (74% mass recovery). The major 

products were isolated by preparative GLC (12' 12% SE-30 on 

Chromosorb W, 70°C initial, 10°/min program) and identified 

as MeOSiMe^ 45 (49%), 1,3,4-trimethyl-l-silacyclopent-3-ene 

144 (46%, spectral data matches authentic sample indepen­

dently prepared, vide supra), 1-n-propyl-l,3,4-trimethyl-l-

silacyclopent-3-ene 152 (2%), and recovered 150 (4%). 
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Compound 152 could not be purified completely by pre-

1 13 
parative GLC, however H NMR and C NMR spectra contained 

all resonances found in a sample of 152 prepared by in­

dependent methods (vide infra), and the GCMS of this 

compound was found to match exactly. 

Synthesis of 1-n-propyl-l,3,4-trimethyl-l-silacyclo-

pent-3-ene, 152 1,1-Dichloro-l-methyl-l-n-propyl-

silane (108) (6.00 g, 0.038 mol) was stirred with 5.00 g 2,3-

dimethyl-1,3-butadiene 119 in 30 mL dry HMPA and 1.0 g Mg 

turnings (0.041 mol) under nitrogen at 80°C for 5 days. 

The solution was then dissoved in pentane and washed with 

dilute HCl (aq.) to remove HMPA, then several times with 

water. After drying (MgSO^) and filtering the solvent was 

removed by rotary evaporation to leave 1.25 g of a very 

heavy oil containing 0.319 g (5% yield) of product. No 

further attempt was made to maximize the yield. Pre­

parative GLC (15*15% SE-30 on Chromosorb W, 70°C initial, 

10°/min. ramp) afforded pure product. Spectral charac­

teristics found were: ^H NMR (C^D^) 5 0.09 (s, 3H), 0.58 
o b 

(t, J = 8.0 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H), 1.23-1.46 

(overlapping m, 6H, including an AB system, H^ at 1.29, Hg 

at 1.35, = 18 Hz apparently overlapping with 2H of the 

propyl group), 1.93 (s, 6H); ^^C N14R (C^Dg) g -2.43, 17.71, 

18.02, 18.32, 19.42, 24.69, 130.75; IR (neat) 2961 (vs). 
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2922 (s), 2872 (s), 1443 (w), 1250 (m), 1175 (s), 825 (s), 

816 (s), 775 (m) cm"^; MS 168 (M+) (39), 153 (3), 126 (29), 

125 (100), 123 (23), 111 (43), 109 (14), 97 (20), 85 (17), 

83 (22), 59 (67); calc'd for C Q̂H Q̂Sî m/e 168.13343, 

measured m/e 168.13316. Anal. Calc'd for C, 

71.34; H, 11.97. Found: C, 71.60; H, 11.78. 

Preparation of 1,1,l-trimethyl-2-n-propyldisilane, 153 

l,l-Dichloro-l-n-propyl-2,2,2-trimethyldisilane 155 was 

prepared from 1,1,1-trichlorotrimethyldisilane 154 (86) and 

1-bromopropane by slowly adding 1-bromopropane (3.75 g, 

0.0305 mol) dissolved in 60 mL dry ether to a stirring 

slurry of Mg (1.00 g, 0.0411 mol) and 0.25 g of 1-bromopro-

pane (total moles 0.0325, 4.00 g) under atmosphere in 

which the Grignard reaction had been initiated with a 

crystal of iodine. The addition was done at a rate suf­

ficient to maintain a gentle reflux. After the addition 

the solution was stirred at room temperature for 5 h. The 

Grignard was transferred via canula and dropwise added to a 

stirring solution of 154 (6.74 g, 0.0325 mmol) in 50 mL 

ether at -78°C. The solution was gradually warmed to 25°C 

by stopping the addition of dry ice to the iso-propanol/dry 

ice cooling bath. After stirring overnight at room tem­

perature, 50 mL pentane were added and the solution was 

filtered through celite/sintered glass. The solvents were 
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removed by distillation and the product removed from the 

remaining salts by trap-to-trap distillation (25°C to -78°C 

under vacuum). Distillation through a 4" X 1/2" frac­

tionating column packed with glass helices (considerable 

foaming of the distillate was noted) at 65 mm Hg afforded a 

continuous fraction, bp 110-115°C, 2.2 g (0.010 mol, 31%), 

of 155. An analytical sample isolated by preparative GLC 

(15' 15% SE-30 on Chromosorb W) gave satisfactory spectral 

properties: NMR (CDCI3) 5 0.24 (s, 9H), 1.02 (t, J = 7.3 

Hz, 3H), 1.15 (t, J = 8 Hz, 2H), 1.55 (m, app. sextet, J = 

7.5 Hz, 2H); NMR (CDCI3) S -3.01, 16.14, 17.34, 24.67; 

MS 216 (0.8), 214 (1.2) (M+), 201 (0.3), 199 (0.4), 159 

(1.2), 157 (1.8), 93 (3.0), 74 (9.0), 73 (100.0), 72 (2.2), 

55 (2.0), 63 (2.8), 59 (7.4), 58 (2.1); calc'd for CgH^gClg-

Si2 m/e 214.01677, measured m/e 214.01619. The procedure 

described above proved very difficult to reproduce and 

generally much lower yields were obtained. 

A total of 1.10 g of compound 155 was added neat at a 

dropwise rate via syringe to a stirring slurry of 0.200 g 

LiAlH^ in 3 mL THF under nitrogen atmosphere at -23°C. 

Trap-to-trap distillation (25°C to -78°C under vacuum, 0.25 

torr) gave a solution containing 0.272 g of 153 by GLC 

yield (1.86 mmol, 36% from 155, 12% overall from 154). 

Final purification was accomplished by preparative GLC (15' 
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15% SE-30 on Chromosorb W, 70°C initial, 6°/min ramp). 

Compound 153 had the following spectral characteristics: 

NMR (CgDg) 5 0.13 (s, 9H), 0.65-0.75 (m, collapses to t, 

0.69, J = 8 Hz, with hv at 3.63, 2H), 0.95 (t, J = 7.3 Hz, 

3H), 1.44 (m, app. sextet, J = 7.5 Hz, 2H), 3.63 (t, J = 

4.5 Hz, 2H, collapses to s with hv at 0.69); NMR (CgDg) 

5 -0.76, 9.36, 17.55, 21.47; IR (neat) 2955 (s), 2925, 2895, 

2870, 2095 (vs) (Si-H), 1240 (s), 925, 830 (s), 770 (s) 

cm"l; MS 146 (7) (M+), 131 (1), 103 (7), 102 (3), 89 (7), 

74 (12), 73 (100), 59 (11); calc'd for CgH^gSi2 m/e 

146.09741, measured m/e 146.09492. Anal. Calc'd for 

CgH^gSig: C, 49.23; H, 12.39. Found: C, 48.69; H, 12.74. 

Synthesis of 1,1-dideuterio-l-n-propyltrimethyl-

disilane, 153-d2 Compound 153-d2 was prepared according 

to the procedure described above for 153 with LiAlD^ used 

instead of LiAlH^. The yield was 11% (by GLC) overall from 

1,1,1-trichlorotrimethyldisilane 154. A sample isolated by 

preparative GLC showed spectral properties consistent with 

quantitative deuteration: ^H NMR (CgDg) ô 0.13 (s, 9H), 

0.68 (t, J = 8 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H), 1.44 (m, 

app. sextet, J = 7.5 Hz), (no silyl hydride was detect­

able); IR (neat) 2950 (vs), 2920, 2885, 2860, 1530 (vs) 

-1  
(Si-D), 1240, 1060, 850, 825, 795, 730, 715, 680, 655 cm ; 

MS 148 (4) (M+), 105 (2), 104 (2), 103 (1), 102 (2), 91 
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(4), 90 (2), 75 (4), 74 (10), 73 (100), 72 (3), 71 (1), 69 

(1), 60 (5), 59 (5), 58 (2). The NMR and IR results 

indicate that quantitative deuteration was obtained. 

FVP of l-n-propyl-2,2,2-trimethyldisilane, 153 

Compound 153 (0.1020 g, 0.699 mmol) was slowly distilled 

through a seasoned horizontal quartz-packed pyrolysis tube 

at 710°C, 10 ^ mm Hg pressure. The products were collected 

in a liquid nitrogen cooled trap and then distilled into a 

gas collection flask. The gases collected were analyzed by 

GLC on a 30' 23% SP-1700 on Chromosorb P-AW column at 60°C. 

Comparison of retention times with authentic samples of 

ethene and propene indicated the formation of propene, with 

ethene present in at most trace amounts (£3% relative to 

propene). 

The pyrolysis was repeated as described above, except 

that the gases formed were distilled into a gas collection 

bulb containing excess bromine. After warming to room 

temperature and standing overnight the bromine solution was 

dissolved in 50 mL pentane, washed with saturated sodium 

sulfite in 1/1 methanol/water intil the bromine was 

removed, then three times with 75 mL water, dried, and 

rotary evaporated. The clear residue remaining was found 

to contain 1,2-dibromopropane in 71% GLC yield. 
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FVP of 1,1-dideuterio-l-n-propyltriinethyldisilanef 

153-d2 The pyrolysis of 153-d2 was conducted as 

o ~ 3 
described for 153 at 710 C, pressure 3 X 10 mm Hg. 

Analysis of the gases formed by GCMS indicated the for­

mation of primarily monodeuterated propene, MS (18eV) 45 

(3.6), 44 (21.3), 43 (100.0), 42 (54.4), 41 (8.2), 40 

(2.3). Undeuterated propene reference, run at same time 

and conditions had the following MS: 44 (0.08), 43 (4.5), 

42 (100.0), 41 (17.6), 40 (4.0). If the contribution of 

the d^ species to the M+ (m/e = 42) ion in the deuterated 

propene is estimated as 17.6 (from the M-1 intensity in the 

reference propene), a calculation by the method of Biemann 

(83) affords an estimate of the sample composition as 24% 

dg, 65% d^, and 11% <5.2 propene. Also found was only a 

trace of ethene (£ 1% relative to propene), apparently 

highly deuterated: MS 30 (23.4), 29 (96.5), 28 (100.0), 27 

(10.8), 26 (7.4). 

At 700°C, 153-d2 is completely decomposed. The 

o -5 
pyrolysis was repeated at 500 C, 6 X 10 mm Hg pressure 

(reaction zone pressure measured by a Baratron gauge was 

0.1 mm Hg), and the products were collected in a liquid 

nitrogen cooled trap. An effervescent pyrolysate was 

obtained, which was immediately dissoved in decalin to 

facilitate recovery. Capillary GLC and GCMS indicated two 

I 
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major components were present, identified as deuterated 

trimethylsilane (70%) and undecomposed starting material 

(19%). Spectral characteristics determined were: tri­

methylsilane, ~H NMR (CgDg) 6 0.00 (s, 9.00 H), only a 

2 
trace of silyl hydride at 4.19 (m, < O.IOH); H NMR (CgHg) g 

4.19 (s) (no other signals were found). Recovered starting 

material (153-d2) matched the NMR spectrum of unpyro-

lyzed material, except that a trace of silyl hydride 

2 
appears to have been formed; 6 3.63 (m, < O.IOH). H NMR 

of pyrolyzed 153-d2 showed only a silyl deuteride at 5 3.63 

(s). 

FVP of 1,1-dideuterio-l-n-propyltrimethyldisilane, 

153-d2, and trapping of products in bromine The 

procedure described above for the FVP of 153-d2 was 

repeated (with 0.0504 g 153-d2, 0.340 mmol), and the 

products were distilled into a 50 mL round bottom flask 

equipped with a greaseless vacuum stopcock containing an 

excess of bromine. The products were worked up by extrac­

ting into methylene chloride, washing with sat'd sodium 

sulfite in 1/1 MeOH/water to remove the excess bromine, 

drying (MgSO^), and removal of solvent by rotary evapor­

ation. The residue contained 1,2-dibromopropane in 83% 

yield. The dibromopropane was isolated by preparative GLC 

(15' 20% QF-1-0065 on GasChrom Q, 120°C, isothermal). Per­
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cent deuterium incorporation was calculated from mass 

spectral ion intensities; the data are presented in Table 

9. The NMR (Fig. 4) showed the following signals, with 

integrated intensities in arbitrary units (C H ): S 1.06-
5 5 

1.40 (unresolved m, 100 counts, methyl group), 2.75-2.98 

(m, 30 counts) and 3.05-3.26 (m, 29 counts) (diastereo-

topic methylene deuteriums), 3.41-3.73 (m, 45 counts, 

methine deuterium). From the integrated intensities the 

relative deuterium distribution may be estimated as 29% at 

, 22% at C2, and 49% at (numbering by lUPAC nomen­

clature) . 

FVP of 1-n-butyl-l-methoxy-l,2,2,2-tetramethyldisilane 

157 Compound 157 (47) was slowly distilled through a hori­

zontal quartz packed pyrolysis tube at 2 X 10 ^ mm Hg at 

7 08°C and the products were collected in a liquid nitrogen 

cooled trap. At the conclusion of the pyrolysis the 

products were distilled vacuo into a 100 mL gas collec­

tion flask at -196°C. The gaseous products were character­

ized by gas chromatography and GCMS. Identifications were 

based on mass spectra at 18 eV, and the relative product 

abundances were determined by peak areas (triangulation) 

obtained on a Fischer Model 4800 Gas Chromatograph equipped 

with a 30' 23% SP-1700 on Chromosorb-P-AW column, and were 

adjusted using literature response factors (87) for the 
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butenes. The products were identified (with relative 

amounts in parentheses) as: 1-butene (49 parts), MS 57 

(5.1), 56 (93.4), 55 (27.5), 42 (4.5), 41 (100.0), 40 

(8.0), 39 (10.7); E-2-butene (31 parts), MS 57 (4.6), 56 

(100.0), 55 (16.2), 42 (2.3), 41 (67.2), 40 (4.5), 39 

(8.1); Z-2-butene (20 parts), MS 57 (4.9), 56 (100.0), 55 

(16.8), 54 (12.8), 53 (4.2), 41 (66.8), 40 (5.3), 39 

(14.4). The distinction between the butenes was made by 

comparison of the GLC retention times on the two columns 

employed with authentic samples of 1-butene and Z-2-butene. 

Also found in significant amounts was a gas identified as 

methylsilane 32 (approximately 24 parts, uncorrected) by 

its mass spectrum: MS 47 (2.3), 46 (7.6), 45 (66.6), 44 

(100.0), 43 (10.3), 31 (5.5), 30 (18.0). Methoxytrimethyl-

silane 45, the expected elimination product of 157, was 

identified in the gas sample by its mass spectrum (approx­

imately 17 parts, uncorrected). Found in only very small 

amounts were ethene (< 1 part), propene (< 1 part), and 

products affording mass spectra suggesting dimethylsilane 

34 (< 2 parts) and trimethylsilane (< 2 parts). Repetition 

of the experiment at 560°C at 2 X 10~^ mm Hg (reaction zone 

pressure < 0.06 mm Hg) yielded the same products in similar 

relative yields: 1-butene (36 parts), E-2-butene (41 

parts), Z-2-butene (23 parts), methylsilane (24 parts. 
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uncorrected), methoxytrimethylsilane 45 {84 parts, uncor­

rected ). 

Additional confirmation of the product identitities 

was provided by bromination of the pyrolysate. The pyro-

lysis was repeated with 0.3398 g 157 (1.67 mmol) at 703°C, 

-5 o 
4 X 10 mm Hg, the products collected at -196 C and 

distilled into a gas collection flask at -196°C containing 

0.80 g (5.0 mmol) bromine. After warming and standing for 

several hours the bromine solution was dissolved in 50 mL 

methylene chloride, washed with sat'd sodium sulfite in 1/1 

methanol/water until colorless, then twice with 75 mL 

water. After drying (MgSO^) the organic phase was filtered 

and rotary evaporated to leave a yellow oil, which was 

extracted into ca. 1.5 mL hexane. Capillary GLC analysis 

showed there to be three major products present, which 

could be separated by preparative GLC into two peaks. The 

first peak ("A") was found to be a mixture of two products, 

identified as meso- and dl-2,3-dibromobutane. The major 

isomer (26% GLC yield) had the following spectral proper­

ties: NMR (CgDg) Û 1.40-1.49 (mult., 6H), 3.55-3.70 

(mult., 2H); ^^C NMR (CgDg) 6 25.13, 54.16; MS 218 (0.3), 

216 (0.6), 214 (0.3) (M+), 137 (42.5), 135 (42.4), 109 

(6.4), 107 (7.3), 73 (12.9), 55 (100.0). The minor isomer 

(19% GLC yield) had the spectral properties: NMR (CgDg) 5 
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1.36 (d, J = 6.7 Hz, 6H), 3.80-3.91 (mult. 2H); NMR 

(CgDg) <S 20.80, 52.71; MS 218 (0.5), 216 (0.1), 214 (0.6) 

(M+), 137 (42.9), 135 (44.3), 109 (6.8), 107 (7.5), 55 

(100.0). It was not determined which isomer was meso and 

which was however presumably the major isomer is meso 

because it would be formed from E-2-butene, which was 

present in the gaseous samples in relatively larger amounts 

than the Z-isomer. The other peak ("B") was isolated by 

preparative GLC (same column and conditions) and identified 

as pure 1,2-dibromobutane (21% GLC yield) on the basis of 

the following spectral properties: NMR (CgDg) 5 0-71 

(t, J = 7.2 Hz, 3H), 1.42 (app. sextet, J = 7.5 Hz, IH), 

1.65-1.80 (mult., IH), 3.08 (apparent t, J = 9.9 Hz, IH), 

3.27 (d of d, J = 10 Hz, J' = 4.6 Hz, IH), 3.58 (mult., 

IH); 13(2 NMR (C D^) Ô 10.97, 29.27, 35.81, 54.64; MS 218 
6 6 

(0.14), 216 (0.31), 214 (0.13) (M+), 137 (37.7), 135 

(38.1), 55 (100.0). The ^H and ^^C NMR and the mass 

spectrum of the 1,2-dibromobutane match those obtained for 

an authentic sample of the compound. 

Synthesis of 1-n-hexyl-l-methoxy-l,2,2,2-tetramethyl-

disilane 161 A 250 mL RB flask equipped with a magnetic 

stirrer, a condenser with a nitrogen gas inlet, a 125 mL 

pressure equilibrating addition funnel, and a septum inlet 

was charged with 1.2 g (0.049 mol) Mg, 5 mL THF, and 0.1 g 
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of 1-chlorohexane (109) and a crystal of iodine. The 

reaction initiated as the solution was brought to reflux. 

After initiation an additional 3.90 g chlorohexane (total 

moles 0.033) dissolved in 75 mL THF was added dropwise, and 

the solution was refluxed overnight. After cooling, the 

Grignard was transferred via canula to a stirring solution 

of l,l-dichloro-l,2,2,2-tetramethyldisilane 151 (85) in 75 

mL THF at -78°C under nitrogen in a 250 mL RB flask 

equipped with a condenser and an overhead stirrer. After 

the addition the solution was warmed to room temperature 

and stirred overnight- The solution was then refluxed an 

additional 24 h. After cooling to 0°C a solution of 

pyridine (2.55 mL, 0.033 mol) and methanol (1.50 mL, 0.059 

mol) was added at once to the reaction mixture, and 

stirring continued an additional 3 h. An aqueous/pentane 

work up removed the THF. Rotary evaporation of the organic 

phase after drying (MgSO^) left a residue weighing 5.6 g, 

which upon distillation (15 mm Hg) afforded 2.51 g product 

(0.0108 mol, 33%, bp 113-8°C). Preparative GLC (12' 15% 

SE-30, 70°C initial, 10°C/min ramp) afforded pure 161, 

identified by its spectral characteristics: ^H NMR (CgDg) 5 

0-16 (s, 9H), 0.22 (s, 3H), 0.65-0.80 (mult., 2H), 0.90 (t, 

J = 6.7 Hz, 3H), 1.15-1.53 (overlapping mults., 8H), 3.31 

(s, 3H); 13(2 NMR iCD^) g -2.87, -1.41, 14.35, 16.78, 23.04, 
6 6 
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23.86, 32.00, 33.66, 51.14; MS 232 (1.4) (M+), 217 (3.4), 

147 (21.7), 135 (7.2), 134 (14.4), 133 (100.0), 117 (11.7), 

89 (7.9), 75 (79.9), 74 (6.6), 73 (33.0), 59 (39.3); calc'd 

for C..H OSi , m/e 232.16788, found m/e 232.1682. Anal. 
11 Zo 2 

Calc'd for C H OSi ; C, 56.82; H, 12.14. Found; C, 
11 Zo 2 

56.61; H, 12.40. 

FVP of 1-n-hexyl-l-methoxy-l,2,2,2-tetramethyldisilane 

161 Compound 161 (0.3230 g, 1.39 mmol) was slowly dis­

tilled (over 3.5 h) at 50°C through a horizontal, quartz-

-5 
packed seasoned pyrolysis tube evacuated to 5 X 10 mm Hg 

o 
at 605 C. The reaction zone pressure was ca. 0.05 mm Hg 

(measured at exit end by a Baratron vacuum guage). The 

products were collected in a liquid nitrogen cooled trap at 

-196°C. After warming to room temperature the pyrolysate 

(obtained in 68% mass recovery) contained only four major 

peaks by capillary GLC and GCMS, which were isolated by 

preparative GLC (25' 25% SE-30 on Chromosorb-W-AW, 50°C 

isothermal) and identified by their spectral character­

istics compared with authentic samples. No unreacted 161 

remained. Yields found were: methoxytrimethylsilane 45 

(83%), 1-hexene (45%), Z-2-hexene (18%), and an isomeric 

hexene mixture (33%). Although 1- and Z-2-hexene were 

isolable in pure form, all efforts at purifying the third 

hexene peak failed. NMR analysis of the mixture however 
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showed it to consist of a mixture of E-2-hexene, and Z- and 

E-3-hexene. The NMR spectrum (Fig. 5) in the alkyl 

region shows a clean sextet at 5 1.25-1.40, assigned to the 

methylene protons of E-2-hexene, and a multiplet at g 

1.55-1.60, assigned to the (vinyl methyl) protons of E-

2-hexene. The region from 6 1.8 5-2.00 consists of over­

lapping allylic protons in both 2- and 3-hexenes. The 

region from 6 0.80-1.00 contains 8 peaks; irradiation at ô 

1.34 collapses three of these to a singlet, assigned as the 

Cg methyl triplet of E-2-hexene ( 6 0.85, J = 7.3 Hz, 

matches authentic sample). Irradiation at 6 1.98 (Fig. 5, 

insert) collapses the eight peaks to five; the clean 

triplet at 0.85 remains and the remaining peaks simplify to 

two at 5 0.90 and 0.9 3 in an approximate relative intensity 

(by integration) of 1.0:2.1, respectively. The resonance 

at Ô 0.93 was assigned to the equivalent and Cg methyl 

protons of E-3-hexene by comparison of the chemical shift 

with an authentic sample. An authentic sample of Z-3-

hexene was not available, however the 6 0.90 peak in the 

decoupled (hv at 6 1.98) spectrum was presumed to belong to 

Z-3-hexene; additional confirmation of this assignment was 

13 13 
provided by C NMR data. Peaks in the C NMR of the 

mixture were assigned by comparison with available samples 

of E-2-hexene and E-3-hexene and literature values (110) 
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for those compounds and for Z-3-hexene. Peaks found were 

assigned (CDCl^) to E-2-hexene (6 13.62, 17.82, 22.75, 

34.72, 124.71, 131.44), to E-3-hexene (5 13.97, 25.55, 

130.96), and to Z-3-hexene (6 14.38, 20.43, the remaining 

resonance may be overlapped with either the 130.96 peak of 

E-3-hexene or the 131.44 peak of E-2-hexene; the literature 

shift is 131.25, vs. 131.24 for E-3-hexene [110a]). 

Integration of the NMR and the decoupled NMR estab­

lished that the mixed hexenes were approximately 2.6/1.0 E-

2-hexene/3-hexene and 2.8/1.0 E-3-hexene/Z-3-hexene. 

Preparation of n-hexyl-1,1,1-trichlorosilane A 250 

mL 3-neck round bottom flask, to which was attached a 

reflux condenser with a nitrogen inlet, 250 mL addition 

funnel, and magnetic stirrer was dried and charged with Mg 

(11.0 g, 0.453 mol), ether (50 mL), 0.3 g 1-chlorohexane 

(109), and a crystal of iodine. After initiation of the . 

reaction an additional 30.7 g (total moles 0.254 mol) of 

chlorohexane dissolved in 150 mL ether was added dropwise 

from the addition funnel at a rate sufficient to maintain a 

gentle reflux, heating as necessary. After the addition 

the solution was refluxed an additional 2.5 h and cooled to 

room temperature. The Grignard reagent was slowly trans­

ferred via canula to a stirring solution of SiCl^ in 250 mL 



www.manaraa.com

182 

ether at -78°C in a 500 mL 3-neck round bottom flask with 

overhead stirring. After the addition the solution was 

gradually warmed to room temperature and stirred overnight. 

Filtration through celite/sintered glass removed the pre­

cipitated salts, and fractional distillation through a 7" X 

1" column packed with glass chips removed the ether. The 

residue was vacuum distilled through a 6" X 1/2" frac­

tionation column at 20 mm Hg to afford 30.7 g product bp 

94-97°C (55% yield). n-Hexyltrichlorosilane (89) was iden­

tified by its spectral properties: NMR (CDClg) 6 0.86-

0.92 (mult.f 3H)f 1.20-1.35 (overlapping multiplets, 4H), 

1.35-1.47 (overlapping multiplets, 4H), 1.50-1.70 (mult., 

13 
2H); C NMR (CDCI3) & 13.99, 22.27, 22.40, 24.40, 31.21, 

31.48; MS 220 (2.0), 218 (2.2) (M+), 191 (6.6), 189 (6.4), 

177 (5.4), 175 (5.4), 163 (8.6), 161 (8.8), 137 (11.0), 135 

(32.7), 133 (33.5), 57 (100.0), 56 (25.0), 55 (14.7). 

Preparation of n-hexylsilane 162 n-Hexylsilane 

162 (88) was prepared from n-hexyl-1,1,1-trichlorosilane 

(vide supra) by reduction with LiAlK^. n-Hexyl-1,1,1-

trichlorosilane (6.0 g, 0.0273 mol) was added dropwise neat 

via syringe to a stirring slurry of LiAlH^ (1.1 g, 0.029 

mol) in 15 mL ether under nitrogen at -23°C and then 

stirred overnight after warming to room temperature. Trap-

to-trap distillation (under vacuum, 1.5 mm Hg) removed the 
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solution from the LiAlH^ and rotary evaporation removed the 

ether to leave nearly pure {> 96% by capillary GLC) 162 

(1.53 g, 49%). Final purification was obtained by prepar­

ative GLC (12' 12% SE-30 on Chromosorb-W, 120°C iso­

thermal). Satisfactory spectra were recorded: NMR 

(CgDg) 0.46-0.57 (mult. 2H), 0.87 (t, J = 7 Hz, 3H), 1.06-

1.34 (overlapping multiplets, 8H), 3.64 (t, J = 3.9 Hz, 

3H); ^^C NMR (CgDg) g 6.13, 14.25, 22.89, 26.66, 31.79, 

32.47; IR 2960 (s), 2925 (vs), 2860 (s), 2145 (vs) (Si-H), 

14S5 (m), 920 (vs), cm"^; MS 116 (0.8) (M+), 115 (1.2), 114 

(2.6), 88 (4.2), 87 (3.6), 86 (8.2), 73 (4.4), 60 (7.6), 59 

(100.0), 58 (14.0), 57 (7.5), 56 (7.0). 

Preparation of n-hexyl-1,1,1-trideuteriosilane, 162-d3 

Compound 162-d2 was prepared using the same procedure as 

described above for the preparation of undeuterated 162 

except that LiAlD^ was used. To a stirring slurry of 1.3 g 

LiAlD^ (0.032 mol) in 15 mL ether at -23°C under nitrogen 

was added dropwise 6.90 g (0.031 mol) of neat n-hexyl-

1,1,1-trichlorosilane. After warming to room temperature, 

trap-to-trap distillation followed by rotary evaporation of 

the ether left 2.40 g (0.020 mol, 65%) of > 98% pure 162-

d^. Final purification was obtained by preparative GLC. 

Spectral analysis was consistent with quantitative deuter-

ation: ^H NMR (CgDg) g 0.51 (t, J = 7.5 Hz, 3H), 0.87 (t, 
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J = 7 Hz, 3H), 1.09-1.32 (overlapping multiplets, 8H), 

there was no Si-H detectable; IR (neat) 2960 (s), 2920 

(vs), 2860 (s), 1565 (vs) and 1555 (s) (Si-D), 1455 (w), 

740 (s), 695 (s) cm~^, there was no trace of any Si-H in 

the IR; MS 119 (0.7), 118 (0.2), 117 (0.7), 116 (2.3), 91 

(4.7), 88 (3.3), 87 (4.3), 63 (7.6), 62 (100.0), 60 (10.0). 

FVP of n-hexylsilane 162 Compound 162 was slowly 

distilled at room temperature through a horizontal quartz 

packed pyrolysis tube evacuated to 2 X 10"^ mm Hg at 735°C. 

During the pyrolysis the vacuum rose to 5 X 10"^ mm Hg, 

indicating the formation of noncondensables (e.g., 

dihydrogen). 

The products were collected in a liquid nitrogen 

cooled trap. Upon warming to room temperature at 1 atm 

pressure considerable effervescence was noted- The 

products were dissolved in 1 mL pentane to facilitate 

recovery. The gaseous products were determined later in a 

separate experiment (vide infra). 

The products were isolated by preparative GLC (25' 25% 

SE-30 on Chromosorb W-AW, 50°C isothermal for 20 min, then 

10°C/min program to 200°C). Yields were determined by 

capillary GLC. The products were identified by GCMS, "^H 

NMR, and capillary and packed column retention times, as 1-

hexene (17%), Z-2-hexene (4%), and an isomeric hexene 
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mixture (11%), determined by NMR to be a mixture of 

approximately 1.2/1.0 E-2-hexene/3-hexenes (the analysis 

was similar to that described above in the FVP of 161). 

Spectra and retention times were matched against authentic 

samples of 1-hexene, and E-2-hexene, and E-3-hexene 

purchased from Aldrich. Starting material 162 was 

recovered in 4% GLC yield. 

In a separate experiment the pyrolysis was repeated 

under the same conditions; measurement at the reaction zone 

using a Baratron Gauge determined the pressure to be 0.05-

0.10 mm Hg. The products were collected in a liquid 

nitrogen cooled trap, and then distilled into a gas collec­

tion flask. Analysis of the gases was performed by GC and 

GCMS. Products identified on the basis of chromatographic 

properties and mass spectra, with relative amounts, cor­

rected using literature response factors or response 

factors estimated by using close isomers (87), in paren­

theses, were: ethene (1.03), propene (0.82), 1-butene 

(0.20), 1-pentene (0.30), 1,3-butadiene (< 0.10), 1-hexene 

(1.00), ̂ -2-hexene (0.21), and the isomeric hexene mixture 

(0.45). Retention times and mass spectra were matched 

against authentic samples of ethene, propene, 1-butene, 

butadiene, and hexenes. The product 1-pentene was also 

identified in the copyrolysis of 162 with 1,3-butadiene by 
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NMR (vide infra). Significantly, there was no 2-butene 

found by GCMS. GLC analysis (30' X 1/8" 23% SP-1700 on 

Chromosorb P-AW) showed that any 2-butene was present, if 

at all, in less than 8% of the 1-butene. A more accurate 

assesment cannot, however, be made from data obtained 

because of low sample concentration. Injection of the 

sample on a capillary GLC indicated that the gaseous sample 

was ca. 45% hexenes and 55% lighter gases. 

Pyrolysis of a mixed hexene solution A solution of 

mixed hexenes consisting of 44% 1-hexene, 17% Z-2-hexene, 

28% E-2-hexene, and 12% 3-hexene was prepared (the compo­

sition of the mixture was made to be similar to the product 

mixture obtained from the FVP of 162, and was characterized 

by GLC and NMR). Slow distillation through a horizontal 

seasoned quartz packed pyrolysis tube at 7 35°C was main­

tained with the pressure at _< 0.1 mm Hg in the reaction 

zone (4 X 10 ^ at the Ion Gauge). The products were 

initially collected in a liquid nitrogen cooled trap and 

after the pyrolysis were distilled into a gas bulb for 

analysis. Analysis of the gases formed by GC and GCMS (in 

this experiment a cooled capillary column was used for 

GCMS) yielded the following identifications based on mass 

spectra and GC retention times (relative amounts in paren­

theses); ethene (0.40), propene (0.38), 1-butene (0.20), 
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1,3-butadiene (0.30), 1-hexene (1.00), and the remaining 

hexenes. Capillary GLC analysis showed the hexenes to 

consist of ca. 59% of the detectable gas present (by uncor­

rected FID response), with relative amounts of 1-hexene 

(1.00), Z-2-hexene (0.38), E-2- and 3-hexenes (1.01), 

compared with relative amounts of 1.00, 0.37, and 0.88 

respectively found before pyrolysis. Hence the relative 

amounts of the hexenes, despite considerable decomposition, 

were little changed by pyrolysis. GCMS also indicated the 

presence of only traces of 2-butenes, four pentene isomers, 

and two pentadiene isomers, although these were formed in 

very minor amounts and could not be detected by routine 

GLC. 

FVP of 1-hexene Pure 1-hexene (0.2266 g) was 

slowly distilled through a horizontal seasoned quartz-

packed pyrolysis tube at 735°C, pressure < 0.1 mm Hg (at 

the reaction zone measured by a Baratron Gauge) and the 

products were collected in a liquid nitrogen cooled trap. 

Upon warming the pyrolysate showed effervescence. Analysis 

by capillary GLC showed only one major compound to be 

present, plus small amounts of more volatile gases, iden­

tified after isolation by preparative GLC and ̂  H NMR and 

GCMS as unchanged 1-hexene in 52% yield. Mass recovery was 

64%, and GCMS showed a complete absence of any other hexene 
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isomers. 

FVP of 2-hexene A mixture of 2- and E-2-hexene 

(used as purchased from Aldrich, 0.2858 g) consisting of 

69.5% Z-2-hexene and 30.5% E-2-hexene was slowly distilled 

through a horizontal quartz packed seasoned pyrolysis tube 

at 735° C, reaction zone pressure 0.4 mm Hg (the pressure 

-5 
measured at the Ion Gauge was 7 X 10 mm Hg). The 

products were collected at -196°C. Upon warming to room 

temperature, an effervescent pyrolysate was obtained, with 

a 48% mass recovery. Analysis by capillary GLC showed 

there to be only two major peaks corresponding to the 2-

hexenes in 21% (Z-2-hexene) and 13% (E-2-hexene) yields 

(based on total moles of hexene used). Analysis by 

capillary GLC and NMR of unreacted starting material 

isolated by preparative GLC (25' 25% SE-30 on Chromosorb W, 

50°C isothermal) showed there to have been no 3-hexene or 

1-hexene formed. 

FVP of 1-n-hexyl-l,1,1-trimethylsilane 163 

Compound 153 (90) (0.1234 g) was slowly distilled through a 

horizontal quartz-packed pyrolysis tube at 740°C, reaction 

zone pressure 0.1 mm Hg, over 1.5 h and the products were 

collected in a liquid nitrogen trap. Upon warming, there 

was no effervescence noted, and the pyrolysate recovered 

(in 72% mass recovery) afforded a clean ^H NMR of unreacted 
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163 and showed no other products by capillary GLC analysis. 

Only traces of gases (< 2% at most) were present. 

FVP of n-hexyl-1,1,1-trideuteriosilane 162-d3 

Compound IGS-d^ was slowly distilled at 4 X 10 ^ torr (Ion 

Gauge) through a horizontal quartz-packed, seasoned pyro-

lysis tube at 735°C. The products were collected at 

-196°C. Upon warming to room temperature at 1 atm 

considerable effervesence was noted. After extraction of 

the pyrolysate in pentane to facilitate handling and 

minimize loss, analysis by capillary GLC and GCMS indicated 

three hexene peaks were formed, which were isolated, along 

with the unreacted IGZ-d^, by preparative GLC (25' 25% SE-

30 on Chromosorb W-AW, 50°C, 20 min, then 10°C/min 

program). Identified on the basis of chromatographic 

properties, mass spectra, and NMR analysis were 1-hexene 

(13%), Z-2-hexene (3%), and a mixture of isomeric hexenes 

(9%). The mixture showed in the NMR (CgDg) a broad 

singlet at 6 1.59 assigned to E-2-hexene (a multiplet in 

undeuterated samples but perhaps broadened by deuterium 

substitution), a triplet at g 0.94 (J = 7.6 Hz) assigned to 

E-3-hexene (matched authentic sample). Smaller peaks 

overlap in the methyl region of the NMR which presumably 

belong to Z-3-hexene. The characterization of the mixture 

13 
is supported by C NMR (CDCl^) which revealed resonances 
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assignable (on the basis of literature values [110] and 

available samples of E-2-hexene and E-3-hexene) to E-2-

hexene (6 13.61, 17.79, 22.76, 34.73, 124.70, and 131.44), 

to E-3-hexene (5 13.96, 25.55, and 130.96), and to ̂ -3-

hexene (14.37 and 20.43). The remaining vinyl carbon of Z~ 

3-hexene could not be identified; it may overlap with the 

130.96 of E-3-hexene (the literature shifts [110a] are 

131.24 for ̂ -3-hexene vs. 131.25 for E-3-hexene). 

Integration of the NMR signals afforded an estimate of 

1.7/1.0 as the ratio of E-2-hexene/3-hexenes. Neither the 

NMR or the NMR spectra provided any clear evidence 

of splitting by deuterium. 

2 
The pyrolysis was repeated to provide samples for H 

NMR and mass spectrometric analysis of deuterium incor­

poration, with yields of 1-hexene (18%), Z-2-hexene (4%), 

the isomeric hexene mixture (12%), and unreacted 162-d2 

(7%) found. Mass spectrometric measurements, corrected ion 

intensities, and percent deuterium incorporation cal­

culations for the hexene samples are presented in Table 10. 

Integrated NMR signal intensities for the 1-hexene and 

^-2-hexene (which could be obtained in pure form) are 

presented in Table 11. The remaining isomeric hexene 

2 
mixture showed the following H NMR, with relative 

intensities (in arbitrary units) in parentheses: (CgHg) g 
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0.6-1.1 (107), 1.2-1.4 (58), 1.4-1.7 (81), 1.7-2.2 (95), 

5.2-5.6 (100). 

The unreacted, isolated 162 was analyzed by NMR and 

found to be unchanged except for the appearance of a silyl 

2 
hydride (0.39H, representing 13% deuterium loss). H NMR 

of the unreacted starting material showed no incorporation 

of deuterium onto the carbon chain; only a silyl deuteride 

at 5 3.7 was present. Mass spectral determination of the 

deuteration by the method of Biemann (83) proved impossible 

due to the facile loss of H from undeuterated 162 in the 

MS, however the spectrum was obtained at high resolution 

(Rs = 75,000) and ions corresponding to 162-d2 (m/e 

119.1210, intensity 15.5 + 1) and 162-d2 (m/e 118.1147, 

intensity 8.5 + 1) were found. Relatively small ions 

corresponding to d^ and dg were detected but could not be 

reliably measured because they were found only as shoulders 

on much larger neighboring ions in the spectrum. These 

results suggest 12% replacement of deuterium with hydrogen 

and are consistent with the NMR results. 

Flow pyrolyses of 162 in nitrogen, ethene, or 1,3-

butadiene carrier gases As a general procedure, 162 was 

added dropwise (in cyclohexane or toluene diluents or neat, 

in the case of butadiene flow experiments) to a vertical 

quartz-packed pyrolysis tube packed with quartz chips swept 
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with a gas flow of 35 mL/min. The products were collected 

at -78°C in a dry ice/iso-propanol cooled trap. Analysis 

by capillary GLC and GCMS established that the same 

products were formed in these pyrolyses as characterized in 

the FVP of 162- Gaseous products were not efficiently 

trapped or analyzed for in this experiment. Conditions and 

yields are summarized in Table 12. Neither toluene nor 

cyclohexane, used as diluents in nitrogen and ethene flow 

pyrolyses, afforded appreciable background products at 

these temperatures. Yields were determined against anisole 

as internal standard added to the pyrolysate, using 

predetermined response factors, and are absolute. 

Nitrogen flow pyrolyses In a typical run (Run 

1, Table 12) 0.1159 g (1.00 mmol) of 162 was dissolved in 

cyclohexane (0.7696 g, 9.16 mmol) and added dropwise over 

0.5 h to the pyrolysis tube at 585°C, with a 65% mass 

recovery. Isolation of the products (Run 2 Table 12, 25' 

25% SE-30 on Chromosorb W, 50°C isothermal) along with 

capillary GLC and GCMS confirmed the identity of the 

products as 1-hexene, Z-2-hexene, and an isomeric mixture 

of ca. 1.1/1.0 E-2-hexene/3-hexene by integration of the 

NMR spectrum. 

Ethene flow pyrolyses The pyrolysis was 

performed on a similar scale and under comparable 
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conditions as described in the nitrogen flow pyrolyses. 

Capillary GLC and GCMS indicated the formation of the same 

products as characterized in the FVP of 162, along with a 

new product (in undetermined yields, but estimated by 

capillary GC FID response as _< 5%) identified as diethyl-

silane 165 on the basis of its NMR and MS: NMR 

( C D )  Ô  0 . 5 2  ( m u l t ,  o f  9  p e a k s ,  4 H ,  c o l l a p s e s  t o  q ,  J  =  
6 5 

7.8 Hz, with hv at 3.85), 0.94 (t, J =7.8 Hz, 6H, col­

lapses to s with hv at 0.52), 3.85 (pent., J = 3.5 Hz, 2H, 

collapses to s with hv at 0.52); MS 90 (0.3), 89 (1.1), 88 

(8.9) (M+), 87 (12.5), 86 (12.8), 59 (97.4), 58 (100.0), 43 

(31.0). Notably, significant amounts of products resulting 

from hexylsilylene addition to ethylene were not found. 

1,3-Butadiene flow pyrolyses Because of the 

presence of butadiene byproducts a more rapid addition of 

162 was employed. Neat 162 (0.3131) was added over 15 min 

to the pyrolysis tube. Capillary GC, GCMS, and isolation 

of the products by preparative GLC (25' 25% SE-30 on 

Chromosorb w, 50°C, isothermal) and ^H NMR confirmed the 

identities of 1-hexene, Z-2-hexene, and a mixture consis­

ting of a 1.3/1.0 ratio of E-2-hexene/3-hexenes. Also 

identified by GCMS and ^H NMR of an isolated sample (same 

column and conditions) was 1-pentene (yield undetermined 

but estimated as ^ 4%). Yields of hexenes given in Table 
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12 were calculated after employing a correction neces­

sitated by the formation of relatively small amounts of 

background products resulting from butadiene pyrolysis 

overlapping the 2- and 3-hexene peaks. This was done by 

subtracting from the measured peak areas an estimated 

background contribution referenced to a standard peak 

present in both the butadiene plus 162 and a sample of 

butadiene (no 162) pyrolysate. In a separate run (Run 9, 

Table 12) a small amount of 1-hexene was added (26 mol %); 

yields reported for Run 9 (except for unreacted 162) are 

based on total moles of 162 plus 1-hexene used. 

Copyrolysis of 1-n-butyl-l,1-dimethylsilane 174 with 

1-hexene A solution of 0.1787 g (1.54 mmol) of 174 (93) 

and 0.1458 g (1.74 mmol) of 1-hexene in cyclohexane diluent 

(1.178 g, 14.0 mmol) was dropwise added over 35 min to a 

vertical seasoned quartz chip packed pyrolysis tube at 

575°C swept with a nitrogen flow of 35 mL/min. The 

products were collected in a dry ice/iso-propanol cooled 

bath, with a 60% mass recovery. Analysis by capillary GLC 

and GCMS revealed no detectable isomerization of the 

hexene. 1-Hexene was recovered in 42% yield; the 174 was 

recovered in 47% yield. 
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Copyrolysis of 1-hexene with 1-methoxypentamethyl-

disilane 175 A solution of 1-hexene (0.0853 g, 1.02 

mmol) and 175 (111) (0.1456 g, 0.899 mmol) in cyclohexane 

(0.8265 g) was slowly added via syringe drive over 1 h to a 

vertical quartz chip packed, seasoned pyrolysis tube at 

550°C swept with a nitrogen flow of 35 mL/min and the 

products were collected in a dry ice/iso-propanol cooled 

trap. GCMS and capillary GLC analysis of the pyrolysate 

showed that methoxytrimethylsilane 45 (37%), unreacted 175 

(21%), and 1-hexene (46%) were present. Yields of 45 and 

175 are based on starting moles of 175 used; the yield of 

1-hexene is based on the starting moles of 1-hexene. 

Capillary GLC analysis showed that 2- and 3-hexenes, if 

formed at all, are present in < 3% yield. 

Copyrolysis of 1-n-hexyl-l-methoxy-l,2,2,2-tetra-

methyldisilane 161 and 1,3-butadiene Neat 161 (0-4845 

g, 2.09 mmol) was dropwise added over 20 min to a vertical 

quartz chip packed pyrolysis tube swept with a butadiene 

flow of 35 mL/min at 485°C. The products were collected 

at -78°C in a dry ice/iso-propanol cooled trap. The 

products were identified by capillary GLC and GCMS and were 

isolated by preparative GLC (25' 25% SE-30 on Chromosorb W, 

50°C isothermal). Products identified were methoxytri­

methylsilane 45 (33%), 1-hexene (19%), Z-2-hexene (4%), and 
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a mixture of hexene isomers (8%) determined by NMR to be 

a ca. 4/1 mixture of E-2-hexene/3-hexenes, 1-methyl-l-

silacyclopent-3-ene 15 (112) (21%), and 1-n-hexyl-

l-methyl-l-silacyclopent-3-ene 179 (9%). Unreacted 161 

was recovered in 28% yield. There was no evidence found 

for any isomerization of 161 based upon GCMS and NMR of 

the isolated, recovered starting material. Compound 179 

had the following spectral characteristics: NMR (CDCl^) 

6 0.07 (s, 3H), 0.59 (t, J = 8 Hz, 2H), 0.82 (t, J = 7 Hz, 

3H), 1.07-1.37 (overlapping multiplets, 12H), 5.79 (broad 

s, 2H); ^^C NMR (CDCl^) 5 -3.60, 14.08, 14.70, 16.61, 

22.60, 24.11, 31.62, 33.03, 131.04; MS 182 (8.4) (M+), 167 

(1.8), 154 (4.5), 139 (4.5), 100 (8.5), 99 (37.7), 98 

(47.4), 97 (100.0), 95 (16.5), 83 (21.7), 72 (10.4), 71 

(13.7); calc'd for C^^H22Si m/e 182.1492, found m/e 

182.1491. GCMS afforded evidence of an isomer of 179: MS 

182 (2.7), 167 (7.6), 154 (9.0), 99 (7.8), 98 (11.7), 97 

(100), 95 (12.3), 83 (15.9), 71 (5.1), 69 (6.7), 55 (5.9). 

The yield of this product was too low to allow complete 

characterization. 

Copyrolysis of 161, 1-octene, and 1,3-butadiene A 

mixture of 161 (0.3344 g, 1.44 mmol) and 1-octene (0.0867 

g, 0.77 mirol) were dropwise added via syringe over 15 min 

to a vertical quartz chip packed pyrolysis tube at 500°C 
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swept with a flow of 1,3-butad.iene of 35 mL/min. The 

products were collected at -78°C in a dry ice/iso-propanol 

cooled trap and were identified by capillary GLC and GCMS 

as being the same as found in the copyrolysis of 161 in 

1,3-butadiene, above: methoxytrimethylsilane 45 (48%), 1-

hexene (26%), Z-2-hexene (6%), E-2-hexene/3-hexene 

(mixture) 10%, l-methyl-l-silacyclopent-3-ene 15 (112) 

(22%), l-n-hexyl-l-methyl-l-silacyclopënt-3-ene 179 (7%), 

and unreacted 161 (23%). A thorough search of the GCMS 

(including single ion chromatogram of the m/e ion 112), and 

isolation (by preparative GLC) and NMR analysis of the 

1-octene recovered failed to disclose any isomerization of 

the 1-octene. The yield of recovered 1-octene was 82% 

(based on starting moles of 1-octene). 

Copyrolysis of 1-octene with 1,3-butadiene Neat 1-

octene (0.1787 g, 1.50 mmol) was added dropwise to a ver­

tical quartz chip packed pyrolysis tube at 500°C swept with 

a butadiene gas flow of 35 mL/min. The products were col­

lected in a -78^0 cooled trap. Capillary GLC and GCMS 

analysis revealed no isomerization or fragmentation of the 

1-octene to hexenes. The yield of 1-octene recovered was 

64%. 
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